Skip to main content
Log in

Dynamic buckling analysis of functionally graded material cylindrical shells under thermal shock

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

This study focuses on dynamic buckling of functionally graded material (FGM) cylindrical shells under thermal shock. The transient non-uniform temperature fields in the FGM shells subjected to dynamic thermal loading are determined using an analytic method. Based on the Hamiltonian principle, the dynamic thermal buckling problem of the FGM cylindrical shells is transformed into the symplectic space for solving. At the same time, the buckling thermal loads and buckling modes corresponding to generalized eigenvalues and eigen solutions of canonical equations can be calculated via the bifurcation conditions. The dynamic thermal buckling characteristics of the FGM cylindrical shells as well as the solving processes are given by the symplectic method. A complete dynamic buckling modes space is presented for the FGM cylindrical shells. The effects of the material gradient, parameters of structural geometry and thermal loadings on the dynamic buckling temperature are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

L :

Length (m)

R :

Radius (m)

h :

Thickness (m)

P :

Material properties

E :

Young‘s modulus (GPa)

uvw :

Displacement components (m)

\(x,\theta ,z\) :

Coordinates

\(\rho \) :

Mass density (kg/m\(^{\mathrm {3}}\))

\(\alpha \) :

Thermal expansion coefficient (1/K)

C :

Thermal capacity [J/(kg K)]

K :

Thermal conductivity (W/mK)

V :

Volume fractions

k :

Power law index

\(\mu \) :

Poisson‘s ratio

\(\varepsilon _{xx} ,\varepsilon _{x\theta } ,\varepsilon _{\theta \theta }\) :

Strains

\(\sigma _{xx,} \sigma _{\theta \theta }\) :

Normal stresses (MPa)

\(\sigma _{x\theta }\) :

Shear stress (MPa)

\(\kappa _{xx}, \kappa _{\theta \theta }\) :

Curvature

\(\kappa _{x\theta }\) :

Torsional curvature

T :

Temperature (K)

t :

Time (s)

\(M_\mathrm{T}\) :

Bending moment (N m)

\(\Delta T\) :

Temperature rise (K)

\(T_{0}\) :

Initial temperature (K)

\(N_{xx} ,N_{\theta \theta } ,N_{x\theta }\) :

Membrane forces

\(M_{xx} ,M_{x\theta } ,M_{\theta \theta }\) :

Membrane moments

U :

Strain energy

\({\bar{U}}\) :

Density of strain energy

\({\bar{L}}\) :

Lagrange density function

H :

Hamiltonian function

\(\varvec{\upvarphi }\) :

State vector

\(\lambda _{n}\) :

Eigenvalue

\(\varvec{\upvarphi }_{n}\) :

Eigenvector

\(c_{1} ,c_{2} ,c_{3} ,c_{4}\) :

Constants

\(\lambda _{j}\) :

Eigen solutions

\(h_\mathrm{r}\) :

Heat exchange coefficient

\(\Delta T_\mathrm{{cr}}\) :

Critical temperatures (K)

\(\Delta t\) :

Increment of time (s)

m :

Axial wave

n :

Circumferential wave

\(\lambda \) :

Radius–thickness ratio

a :

Parameter of the load

\(N_\mathrm{T}\) :

Thermal membrane force (N)

References

  1. Li, X., Du, C.C., Li, Y.H.: Parametric instability of a functionally graded cylindrical thin shell subjected to both axial disturbance and thermal environment. Thin Walled Struct. 123, 25–35 (2018)

    Article  Google Scholar 

  2. Zhang, J.H., Li, S.R.: Dynamic buckling of FGM truncated conical shells subjected to non-uniform normal impact load. Compos. Struct. 92(10), 2979–2983 (2010)

    Article  Google Scholar 

  3. Javaheri, R., Eslami, M.R.: Thermal buckling of functionally graded plates. AIAA J. 40(1), 162–169 (2002)

    Article  ADS  Google Scholar 

  4. Ma, L.S., Wang, T.J.: Nonlinear bending and post-buckling of a functionally graded circular plate under mechanical and thermal loadings. Int. J. Solids Struct. 40(13–14), 3311–3330 (2003)

    Article  Google Scholar 

  5. Ma, L.S., Wang, T.J.: Relationships between the solutions of axisymmetric bending and buckling of functionally graded circular plates based on the third-order plate theory and the classical solutions for isotropic circular plates. Int. J. Solids Struct. 41(1), 85–101 (2004)

    Article  Google Scholar 

  6. Liew, K.M., Yang, J., Kitipornchia, S.: Post-bucking of piezoelectric FGM plates subject to thermo-electro-mechanical loading. Int. J. Solids Struct. 40(14), 3869–3892 (2003)

    Article  Google Scholar 

  7. Li, S.R., Zhang, J.H., Zhao, Y.G.: Thermal post-buckling of functionally graded material Timoshenko beams. Appl. Math. Mech. 27(4), 803–811 (2006)

    Article  Google Scholar 

  8. Li, S.R., Zhang, J.H., Zhao, Y.G.: Nonlinear thermomechanical post-buckling of circular FGM plate with geometric imperfection. Thin Walled Struct. 45(5), 528–536 (2007)

    Article  Google Scholar 

  9. Mirzavand, B., Eslami, M.R., Shakeri, M.: Dynamic thermal postbuckling analysis of piezoelectric functionally graded cylindrical shells. J. Therm. Stresses 33(7), 646–660 (2010)

    Article  Google Scholar 

  10. Mirzavand, B., Eslami, M.R., Reddy, J.N.: Dynamic thermal postbuckling analysis of shear deformable piezoelectric FGM cylindrical shells. J. Therm. Stresses 36(3), 189–206 (2013)

    Article  Google Scholar 

  11. Mehrian, S.M.N., Naei, M.H.: Two dimensional analysis of functionally graded partial annular disk under radial thermal shock using hybrid Fourier-Laplace transform. Appl. Mech. Mater. 436, 92–99 (2013)

    Article  Google Scholar 

  12. Shariyat, M.: Dynamic thermal buckling of suddenly heated temperature-dependent FGM cylindrical shells under combined axial compression and external pressure. Int. J. Solids Struct. 45(7), 2598–2612 (2008)

    Article  Google Scholar 

  13. Shariyat, M.: Vibration and dynamic buckling control of imperfect hybrid FGM plates with temperature-dependent material properties subjected to thermo-electro-mechanical loading conditions. Compos. Struct. 88(2), 240–252 (2009)

    Article  Google Scholar 

  14. Huang, H., Han, Q.: Nonlinear dynamic buckling of functionally graded cylindrical shells subjected to time-dependent axial load. Compos. Struct. 92(2), 593–598 (2010)

    Article  Google Scholar 

  15. Bich, D.H., Dung, D.V., Nam, V.H., Phuong, N.T.: Nonlinear static and dynamic buckling analysis of imperfect eccentrically stiffened functionally graded circular cylindrical thin shells under axial compression. Int. J. Mech. Sci. 74, 190–200 (2013)

    Article  Google Scholar 

  16. Gao, K., Gao, W., Wu, D., Song, C.: Nonlinear dynamic buckling of the imperfect orthotropic E-FGM circular cylindrical shells subjected to the longitudinal constant velocity. Int. J. Mech. Sci. 138, 199–209 (2018)

    Article  Google Scholar 

  17. Lim, C.W., Xu, X.S.: Symplectic elasticity: theory and applications. Appl. Mech. Rev. 63(5), 1–10 (2010)

    Article  Google Scholar 

  18. Xu, X., Chu, H., Lim, C.W.: A symplectic Hamiltonian approach for thermal buckling of cylindrical shells. Int. J. Struct. Stab. Dyn. 10(2), 273–286 (2010)

    Article  MathSciNet  Google Scholar 

  19. Xu, X., Ma, J., Lim, C.W., Chu, H.: Dynamic local and global buckling of cylindrical shells under axial impact. Eng. Struct. 31(5), 1132–1140 (2009)

    Article  Google Scholar 

  20. Sun, J., Xu, X., Lim, C.W.: Buckling of functionally graded cylindrical shells under combined thermal and compressive loads. J. Therm. Stresses 37(3), 340–362 (2014)

    Article  Google Scholar 

  21. Sun, J., Xu, X., Lim, C.W.: Torsional buckling of functionally graded cylindrical shells with temperature-dependent properties. Int. J. Struct. Stab. Dyn. 14(1), 1–23 (2014)

    Article  MathSciNet  Google Scholar 

  22. Zhang, J.H., Li, G.Z., Li, S.R.: DQM based thermal stresses analysis of a functionally graded cylindrical shell under thermal shock. J. Therm. Stresses 38(7), 959–98 (2015)

    Article  ADS  Google Scholar 

  23. Zhang, J.H., Pan, S.C., Chen, L.K.: Dynamic thermal buckling and postbuckling of clamped–clamped imperfect functionally graded annular plates. Nonlinear Dyn. 95(1), 565–577 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [Grant Numbers 11662008, 11862012] and the abroad exchange funding for young backbone teachers of Lanzhou University of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinghua Zhang.

Additional information

Communicated by Dr. Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Chen, S. & Zheng, W. Dynamic buckling analysis of functionally graded material cylindrical shells under thermal shock. Continuum Mech. Thermodyn. 32, 1095–1108 (2020). https://doi.org/10.1007/s00161-019-00812-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-019-00812-z

Keywords

Navigation