Skip to main content
Log in

Hard X-ray emission from the solar corona

  • Review Article
  • Published:
The Astronomy and Astrophysics Review Aims and scope

Abstract

This review surveys hard X-ray emissions of non-thermal electrons in the solar corona. These electrons originate in flares and flare-related processes. Hard X-ray emission is the most direct diagnostic of electron presence in the corona, and such observations provide quantitative determinations of the total energy in the non-thermal electrons. The most intense flare emissions are generally observed from the chromosphere at footpoints of magnetic loops. Over the years, however, many observations of hard X-ray and even γ-ray emission directly from the corona have also been reported. These coronal sources are of particular interest as they occur closest to where the electron acceleration is thought to occur. Prior to the actual direct imaging observations, disk occultation was usually required to study coronal sources, resulting in limited physical information. Now RHESSI has given us a systematic view of coronal sources that combines high spatial and spectral resolution with broad energy coverage and high sensitivity. Despite the low density and hence low bremsstrahlung efficiency of the corona, we now detect coronal hard X-ray emissions from sources in all phases of solar flares. Because the physical conditions in such sources may differ substantially from those of the usual “footpoint” emission regions, we take the opportunity to revisit the physics of hard X-radiation and relevant theories of particle acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alexander D, Katsev S (1996) Geometrical considerations in imaging the solar corona. Solar Phys 167: 153–166

    Article  ADS  Google Scholar 

  • Alexander D, Metcalf TR (1997) A spectral analysis of the masuda flare using Yohkoh Hard X-ray telescope pixon reconstruction. ApJ 489: 442. doi:10.1086/304762

    Article  ADS  Google Scholar 

  • Alfvén H, Carlqvist P (1967) Currents in the solar atmosphere and a theory of solar flares. Solar Phys 1: 220–228. doi:10.1007/BF00150857

    Article  ADS  Google Scholar 

  • Allred JC, Hawley SL, Abbett WP, Carlsson M (2005) Radiative hydrodynamic models of the optical and ultraviolet emission from solar flares. ApJ 630:573–586, doi:10.1086/431751, arXiv:astro-ph/0507335

    Google Scholar 

  • Antiochos SK, Sturrock PA (1978) Evaporative cooling of flare plasma. ApJ 220: 1137–1143. doi:10.1086/155999

    Article  ADS  Google Scholar 

  • Asai A, Nakajima H, Shimojo M, White SM, Hudson HS, Lin RP (2006) Preflare nonthermal emission observed in microwaves and Hard X-rays. PASJ 58: L1–L5

    ADS  Google Scholar 

  • Aschwanden MJ (2002) Particle acceleration and kinematics in solar flares. A synthesis of recent observations and theoretical concepts (Invited Review). Space Sci Rev 101: 1–227. doi:10.1023/A:1019712124366

    ADS  Google Scholar 

  • Aschwanden MJ, Alexander D (2001) Flare plasma cooling from 30 MK down to 1 MK modeled from Yohkoh, GOES, and TRACE observations during the Bastille Day Event (14 July 2000). Solar Phys 204: 91–120. doi:10.1023/A:1014257826116

    Article  ADS  Google Scholar 

  • Aschwanden MJ, Wills MJ, Hudson HS, Kosugi T, Schwartz RA (1996) Electron time-of-flight distances and flare loop geometries compared from CGRO and Yohkoh observations. ApJ 468: 398. doi:10.1086/177700

    Article  ADS  Google Scholar 

  • Aschwanden MJ, Fletcher L, Sakao T, Kosugi T, Hudson H (1999) Deconvolution of directly precipitating and trap-precipitating electrons in solar flare Hard X-rays. III. Yohkoh Hard X-ray telescope data analysis. ApJ 517: 977–989

    Article  ADS  Google Scholar 

  • Bai T (1982) Transport of energetic electrons in a fully ionized hydrogen plasma. ApJ 259: 341–349. doi:10.1086/160170

    Article  ADS  Google Scholar 

  • Bai T, Ramaty R (1979) Hard X-ray time profiles and acceleration processes in large solar flares. ApJ 227: 1072–1081

    Article  ADS  Google Scholar 

  • Bale SD, Reiner MJ, Bougeret JL, Kaiser ML, Krucker S, Larson DE, Lin RP (1999) The source region of an interplanetary type II radio burst. GRL 26: 1573–1576. doi:10.1029/1999GL900293

    Article  ADS  Google Scholar 

  • Bastian TS, Benz AO, Gary DE (1998) Radio emission from solar flares. ARAA 36: 131–188. doi:10.1146/annurev.astro.36.1.131

    Article  ADS  Google Scholar 

  • Battaglia M, Benz AO (2006) Relations between concurrent hard X-ray sources in solar flares. A&A 456:751–760 doi:10.1051/0004-6361:20065233, arXiv:astro-ph/0606353

    Google Scholar 

  • Battaglia M, Benz AO (2007) Exploring the connection between coronal and footpoint sources in a thin-thick target solar flare model. A&A 466:713–716, doi:10.1051/0004-6361:20077144, arXiv:astro-ph/0702309

    Google Scholar 

  • Benz AO (1977) Spectral features in solar hard X-ray and radio events and particle acceleration. ApJ 211: 270–280

    Article  ADS  Google Scholar 

  • Bespalov PA, Zaitsev VV, Stepanov AV (1987) On the origin of time delays in hard X-ray and gamma-ray emission of solar flares. Solar Phys 114: 127–140

    ADS  Google Scholar 

  • Blackman EG, Field GB (1994) Nonthermal acceleration from reconnection shocks. Phys Rev Lett. 73: 3097–3100, arXiv:astro-ph/9410036

    Article  ADS  Google Scholar 

  • Blumenthal GR, Gould RJ (1970) Bremsstrahlung, synchrotron radiation and Compton scattering of high-energy electrons traversing dilute gases. Rev Mod Phys 42: 237–270

    Article  ADS  Google Scholar 

  • Bogachev SA, Somov BV (2007) Formation of power-law electron spectra in collapsing magnetic traps. Astron Lett 33: 54–62. doi:10.1134/S1063773707010070

    Article  ADS  Google Scholar 

  • Bohlin JD, Frost KJ, Burr PT, Guha AK, Withbroe GL (1980) Solar maximum mission. Solar Phys 65: 5–14. doi:10.1007/BF00151380

    Article  ADS  Google Scholar 

  • Bone L, Brown JC, Fletcher L, Veronig A, White S (2007) Birth and evolution of a dense coronal loop in a complex flare region. A&A 446: 339–346. doi:10.1051/0004-6361:20020947

    Article  ADS  Google Scholar 

  • Brown JC (1971) The deduction of energy spectra of non-thermal electrons in flares from the observed dynamic spectra of Hard X-Ray bursts. Solar Phys 18: 489

    Article  ADS  Google Scholar 

  • Brown JC (1973) The temperature structure of chromospheric flares heated by non-thermal electrons. Solar Phys 31: 143

    Article  ADS  Google Scholar 

  • Brown JC (1976) The interpretation of hard and soft X-rays from solar flares. R Soc Lond Philos Trans Ser A 281

  • Brown JC, Hoyng P (1975) Betatron acceleration in a large solar hard X-ray burst. ApJ 200: 734–746

    Article  ADS  Google Scholar 

  • Brown JC, Loran JM (1985) Possible evidence for stochastic acceleration of electrons in solar hard X-ray bursts observed by SMM. MNRAS 212: 245–255

    ADS  Google Scholar 

  • Brown JC, Mallik PCV (2008) Non-thermal recombination—a neglected source of flare hard X-rays and fast electron diagnostic. A&A 481: 507–518

    Article  ADS  Google Scholar 

  • Brown JC, Melrose DB (1977) Collective plasma effects and the electron number problem in solar hard X-ray bursts. Solar Phys 52: 117–131

    Article  ADS  Google Scholar 

  • Brown JC, Carlaw VA, Cromwell D, Kane SR (1983) A comparison of the thick-target model with stereo data on the height structure of solar hard X-ray bursts. Solar Phys 88: 281–295

    Article  ADS  Google Scholar 

  • Brown JC, Aschwanden MJ, Kontar EP (2002) Chromospheric height and density measurements in a solar flare observed with RHESSI I. Theory. Solar Phys 210: 373–381. doi:10.1023/A:1022469402781

    Article  ADS  Google Scholar 

  • Brueckner GE, Howard RA, Koomen MJ, Korendyke CM, Michels DJ, Moses JD, Socker DG, Dere KP, Lamy PL, Llebaria A, Bout MV, Schwenn R, Simnett GM, Bedford DK, Eyles CJ (1995) The large angle spectroscopic coronagraph (LASCO). Solar Phys 162: 357–402. doi:10.1007/BF00733434

    Article  ADS  Google Scholar 

  • Cargill PJ (2001) Theories of heating and particle acceleration in the solar corona. Adv Space Res 26: 1759–1768

    Article  ADS  Google Scholar 

  • Cargill PJ, Priest ER (1983) The heating of postflare loops. ApJ 266: 383–389. doi:10.1086/160786

    Article  ADS  Google Scholar 

  • Caspi A, Lin RP (2008) RHESSI X-ray continuum and Fe-to-Fe/Ni line ratio measurements of thermal flare plasma (in preparation)

  • Cliver EW, Dennis BR, Kiplinger AL, Kane SR, Neidig DF, Sheeley NR, Koomen MJ (1986) Solar gradual hard X-ray bursts and associated phenomena. ApJ 305: 920–935

    Article  ADS  Google Scholar 

  • Conway AJ, MacKinnon AL (1998) The electron cyclotron maser in hot thermal plasmas. A&A 339: 298–308

    ADS  Google Scholar 

  • Culhane JL, Acton LW (1970) A simplified thermal continuum functionfor the X-ray emission from coronal plasmas. MNRAS 151: 141

    ADS  Google Scholar 

  • Dalla S, Browning PK (2005) Particle acceleration at a three-dimensional reconnection site in the solar corona. A&A 436: 1103–1111. doi:10.1051/0004-6361:20042589

    Article  ADS  Google Scholar 

  • Dauphin C, Vilmer N (2007) Time delay between γ-ray lines and hard X-ray emissions during the 23 July 2002 solar flare interpreted by a trap plus precipitation model. A&A 468: 289–298. doi:10.1051/0004-6361:20066247

    Article  ADS  Google Scholar 

  • Dennis BR, Zarro DM (1993) The Neupert effect—What can it tell us about the impulsive and gradual phases of solar flares?. Solar Phys 146: 177–190

    Article  ADS  Google Scholar 

  • Dmitruk P, Matthaeus WH, Seenu N (2004) Test particle energization by current sheets and nonuniform fields in magnetohydrodynamic turbulence. ApJ 617: 667–679

    Article  ADS  Google Scholar 

  • Domingo V, Fleck B, Poland AI (1995) The SOHO mission: an overview. Solar Phys 162: 1–2. doi:10.1007/BF00733425

    Article  ADS  Google Scholar 

  • Drake JF, Shay MA, Thongthai W, Swisdak M (2005) Production of energetic electrons during magnetic reconnection. Phys Rev Lett 94(9): 095,001

    Article  Google Scholar 

  • Drake JF, Swisdak M, Che H, Shay MA (2006) Electron acceleration from contracting magnetic islands during reconnection. Nature 443: 553–556. doi:10.1038/nature05116

    Article  ADS  Google Scholar 

  • Dreicer H (1959) Electron and ion runaway in a fully ionized gas I. Phys Rev 115: 238–249. doi:10.1103/PhysRev.115.238

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • Duijveman A, Hoyng P, Machado ME (1982) X-ray imaging of three flares during the impulsive phase. Solar Phys 81: 137–157

    Article  ADS  Google Scholar 

  • Ellison DC, Baring MG, Jones FC (1996) Nonlinear particle acceleration in oblique shocks. ApJ 473:1029–+, doi:10.1086/178213, arXiv:astro-ph/9609182

    Google Scholar 

  • Emslie AG (1978) The collisional interaction of a beam of charged particles with a hydrogen target of arbitrary ionization level. ApJ 224: 241–246

    Article  ADS  Google Scholar 

  • Emslie AG, Kontar EP, Krucker S, Lin RP (2003) RHESSI Hard X-Ray imaging spectroscopy of the large gamma-ray flare of 2002 July 23. ApJL 595: L107–L110. doi:10.1086/378931

    Article  ADS  Google Scholar 

  • Emslie AG, Dennis BR, Holman GD, Hudson HS (2005) Refinements to flare energy estimates: a followup to “Energy partition in two solar flare/CME events”. J Geophys Res (Space Physics) 110:11,103–+, doi:10.1029/2005JA011305

  • Énomé S, Tanaka H (1971) Magnetic fields in the lower corona associated with the expanding limb burst on March 30th 1969 inferred from the microwave high-resolution observations. In: Howard R (ed) Solar magnetic fields, IAU Symposium, vol 43, pp 413–+

  • Feldman U, Hiei E, Phillips KJH, Brown CM, Lang J (1994) Very impulsive solar flares observed with the Yohkoh spacecraft. ApJ 421: 843–850. doi:10.1086/173696

    Article  ADS  Google Scholar 

  • Feldman U, Laming JM, Doschek GA, Warren HP, Golub L (1999) On the ability of an extreme-ultraviolet multilayer normal-incidence telescope to provide temperature information for solar plasmas. ApJL 511: L61–L64. doi:10.1086/311835

    Article  ADS  Google Scholar 

  • Fletcher L (1995) On the generation of loop-top impulsive hard X-ray sources. A&A 303: L9+

    ADS  Google Scholar 

  • Fletcher L, Hudson HS (2008) Impulsive phase flare energy transport by large-scale Alfvén waves and the electron acceleration problem. ApJ 675:1645–1655, doi:10.1086/527044, arXiv:0712.3452

    Google Scholar 

  • Fletcher L, Martens PCH (1998) A model for Hard X-Ray emission from the top of flaring loops. ApJ 505: 418–431. doi:10.1086/306137

    Article  ADS  Google Scholar 

  • Fletcher L, Hannah IG, Hudson HS, Metcalf TR (2007) A TRACE white light and RHESSI Hard X-Ray study of flare energetics. ApJ 656: 1187–1196. doi:10.1086/510446

    Article  ADS  Google Scholar 

  • Forbes TG, Acton LW (1996) Reconnection and field line shrinkage in solar flares. ApJ 459: 330. doi:10.1086/176896

    Article  ADS  Google Scholar 

  • Frost KJ, Dennis BR (1971) Evidence from Hard X-Rays for two-stage particle acceleration in a solar flare. ApJ 165: 655

    Article  ADS  Google Scholar 

  • Gallagher PT, Dennis BR, Krucker S, Schwartz RA, Tolbert AK (2002) RHESSI and TRACE observations of the 21 April 2002 x1.5 Flare. Solar Phys 210: 341–356. doi:10.1023/A:1022422019779

    Article  ADS  Google Scholar 

  • Gan WQ (1998) An invariable point in the energy spectra of non-thermal electrons of solar flares. APSS 260: 515–519

    ADS  Google Scholar 

  • Garcia HA (1994) Temperature and emission measure from GOES soft X-ray measurements. Solar Phys 154: 275–308

    Article  ADS  Google Scholar 

  • Ginzburg VL, Syrovatskii SI (1969) Developments in the theory of synchrotron radiation and its reabsorption. ARAA 7: 375–420

    Article  ADS  Google Scholar 

  • Giuliani P, Neukirch T, Wood P (2005) Particle motion in collapsing magnetic traps in solar flares. I. Kinematic theory of collapsing magnetic traps. ApJ 635: 636–646

    Article  ADS  Google Scholar 

  • Gkioulidou M, Zimbardo G, Pommois P, Veltri P, Vlahos L (2007) High energy particle transport in stochastic magnetic fields in the solar corona. A&A 462: 1113–1120

    Article  ADS  Google Scholar 

  • Goff CP, van Driel-Gesztelyi L, Harra LK, Matthews SA, Mandrini CH (2005) A slow coronal mass ejection with rising X-ray source. A&A 434: 761–771. doi:10.1051/0004-6361:20042321

    Article  ADS  Google Scholar 

  • Gold T (1962) Magnetic storms. Space Sci Rev 1: 100–114. doi:10.1007/BF00174637

    Article  ADS  Google Scholar 

  • Goldreich P, Sridhar S (1997) Magnetohydrodynamic turbulence revisited. ApJ 485:680–+, doi:10.1086/304442, arXiv:astro-ph/9612243

    Google Scholar 

  • Grigis PC, Benz AO (2004) The spectral evolution of impulsive solar X-ray flares. A&A 426:1093–1101, doi:10.1051/0004-6361:20041367, astro-ph/0407431

    Google Scholar 

  • Grigis PC, Benz AO (2006) Electron acceleration in solar flares: theory of spectral evolution. A&A 458:641–651, arXiv:astro-ph/0606339

    Google Scholar 

  • Hamilton RJ, Petrosian V (1992) Stochastic acceleration of electrons. I. Effects of collisions in solar flares. ApJ 398: 350–358. doi:10.1086/171860

    Article  ADS  Google Scholar 

  • Handy BN, Acton LW, Kankelborg CC, Wolfson CJ, Akin DJ, Bruner ME, Caravalho R, Catura RC, Chevalier R, Duncan DW, Edwards CG, Feinstein CN, Freeland SL, Friedlaender FM, Hoffmann CH, Hurlburt NE, Jurcevich BK, Katz NL, Kelly GA, Lemen JR, Levay M, Lindgren RW, Mathur DP, Meyer SB, Morrison SJ, Morrison MD, Nightingale RW, Pope TP, Rehse RA, Schrijver CJ, Shine RA, Shing L, Strong KT, Tarbell TD, Title AM, Torgerson DD, Golub L, Bookbinder JA, Caldwell D, Cheimets PN, Davis WN, Deluca EE, McMullen RA, Warren HP, Amato D, Fisher R, Maldonado H, Parkinson C (1999) The transition region and coronal explorer. Solar Phys 187: 229–260

    Article  ADS  Google Scholar 

  • Haug E (1975) Bremsstrahlung and pair production in the field of free electrons. Z Naturforsch Teil A 30: 1099–1113

    ADS  Google Scholar 

  • Heyvaerts J, Priest ER, Rust DM (1977) An emerging flux model for the solar flare phenomenon. ApJ 216: 123–137

    Article  ADS  Google Scholar 

  • Hirayama T (1974) Theoretical model of flares and prominences. I. Evaporating flare model. Solar Phys 34: 323–338. doi:10.1007/BF00153671

    Article  ADS  Google Scholar 

  • Holman GD, Pesses ME (1983) Solar type II radio emission and the shock drift acceleration of electrons. ApJ 267: 837–843. doi:10.1086/160918

    Article  ADS  Google Scholar 

  • Holman GD, Sui L, Schwartz RA, Emslie AG (2003) Electron bremsstrahlung Hard X-ray spectra, electron distributions, and energetics in the 2002 July 23 solar flare. ApJL 595: L97–L101. doi:10.1086/378488

    Article  ADS  Google Scholar 

  • Hori K, Yokoyama T, Kosugi T, Shibata K (1998) Single and multiple solar flare loops: hydrodynamics and Ca XIX resonance line emission. ApJ 500: 492. doi:10.1086/305725

    Article  ADS  Google Scholar 

  • Hoyng P, van Beek HF, Brown JC (1976) High time resolution analysis of solar hard X-ray flares observed on board the ESRO TD-1A satellite. Solar Phys 48: 197–254

    Article  ADS  Google Scholar 

  • Hoyng P, Duijveman A, Machado ME, Rust DM, Svestka Z, Boelee A, de Jager C, Frost KT, Lafleur H, Simnett GM, van Beek HF, Woodgate BE (1981) Origin and location of the Hard X-ray emission in a two-ribbon flare. ApJL 246: L155+. doi:10.1086/183574

    Article  ADS  Google Scholar 

  • Hudson HS (1972) Thick-target processes and white-light flares. Solar Phys 24: 414

    Article  ADS  MathSciNet  Google Scholar 

  • Hudson HS (1978) A purely coronal hard X-ray event. ApJ 224: 235–240. doi:10.1086/156370

    Article  ADS  Google Scholar 

  • Hudson HS (2000) Implosions in coronal transients. ApJL 531: L75–L77. doi:10.1086/312516

    Article  ADS  Google Scholar 

  • Hudson HS, Fárník F (2002) Spectral variations of flare hard X-rays. In: Wilson A (ed) ESA SP-506: solar variability: from core to outer frontiers, pp 261–264

  • Hudson HS, Ohki K (1972) Soft X-ray and microwave observations of hot regions in solar flares. Solar Phys 23: 155

    Article  ADS  Google Scholar 

  • Hudson H, Ryan J (1995) High-energy particles in solar flares. ARAA 33: 239–282. doi:10.1146/annurev.aa.33.090195.001323

    Article  ADS  Google Scholar 

  • Hudson HS, Lin RP, Stewart RT (1982) Second-stage acceleration in a limb-occulted flare. Solar Phys 75: 245–261

    Article  ADS  Google Scholar 

  • Hudson HS, Kosugi T, Nitta NV, Shimojo M (2001) Hard X-radiation from a fast coronal ejection. ApJL 561: L211–L214. doi:10.1086/324760

    Article  ADS  Google Scholar 

  • Hurford GJ, Read RB, Zirin H (1984) A frequency angle interferometer for solar microwave spectroscopy. Solar Phys 94: 413–426. doi:10.1007/BF00151327

    Article  ADS  Google Scholar 

  • Hurford GJ, Schmahl EJ, Schwartz RA, Conway AJ, Aschwanden MJ, Csillaghy A, Dennis BR, Johns-Krull C, Krucker S, Lin RP, McTiernan J, Metcalf TR, Sato J, Smith DM (2002) The RHESSI imaging concept. Solar Phys 210: 61–86. doi:10.1023/A:1022436213688

    Article  ADS  Google Scholar 

  • Jiang YW, Liu S, Liu W, Petrosian V (2006) Evolution of the loop-top source of solar flares: heating and cooling processes. ApJ 638:1140–1153, doi:10.1086/498863, astro-ph/0508532

    Google Scholar 

  • Kahler SW (1992) Solar flares and coronal mass ejections. ARAA 30: 113–141. doi:10.1146/annurev.aa.30.090192.000553

    Article  ADS  Google Scholar 

  • Kahler SW, Ragot BR (2008) Remote sensing of gamma-ray emission from solar energetic proton interactions with the solar wind. ApJ 675: 846–852. doi:10.1086/526416

    Article  ADS  Google Scholar 

  • Kane SR (1983) Spatial structure of high energy photon sources in solar flares. Solar Phys 86: 355–365

    Article  ADS  Google Scholar 

  • Kane SR, Anderson KA, Evans WD, Klebesadel RW, Laros J (1979) Observation of an impulsive solar X-ray burst from a coronal source. ApJL 233: L151–L155. doi:10.1086/183095

    Article  ADS  Google Scholar 

  • Kane SR, McTiernan J, Loran J, Fenimore EE, Klebesadel RW, Laros JG (1992) Stereoscopic observations of a solar flare Hard X-ray source in the high corona. ApJ 390: 687–702. doi:10.1086/171320

    Article  ADS  Google Scholar 

  • Karlicky M, Bárta M (2006) X-Ray loop-top source generated by processes in a flare collapsing trap. ApJ 647: 1472–1479. doi:10.1086/505460

    Article  ADS  Google Scholar 

  • Karlicky M, Kosugi T (2004) Acceleration and heating processes in a collapsing magnetic trap. A&A 419: 1159–1168

    Article  ADS  Google Scholar 

  • Kašparová J, Kontar EP, Brown JC (2007) Hard X-ray spectra and positions of solar flares observed by RHESSI: photospheric albedo, directivity and electron spectra. A&A 466:705–712, doi:10.1051/0004-6361:20066689, arXiv:astro-ph/0701871

  • Kennel CF (1969) Consequences of a magnetospheric plasma. Rev Geophys Space Phys 7: 379–419

    Article  ADS  Google Scholar 

  • Kennel CF, Petschek HE (1966) Limit on stably trapped particle fluxes. JGR 71: 1–28

    ADS  Google Scholar 

  • Kiplinger AL (1995) Comparative studies of Hard X-ray spectral evolution in solar flares with high-energy proton events observed at earth. ApJ 453: 973. doi:10.1086/176457

    Article  ADS  Google Scholar 

  • Klimchuk JA (2000) Cross-sectional properties of coronal loops. Solar Phys 193: 53–75

    Article  ADS  Google Scholar 

  • Koch HW, Motz JW (1959) Bremsstrahlung cross-section formulas and related data. Rev Mod Phys 31: 920–956

    Article  ADS  Google Scholar 

  • Kontar EP, Brown JC (2006) Stereoscopic electron spectroscopy of solar Hard X-ray flares with a single spacecraft. ApJL 653:L149–L152, doi:10.1086/510586, arXiv:astro-ph/0611170

  • Kontar EP, Emslie AG, Massone AM, Piana M, Brown JC, Prato M (2007) Electron–Electron Bremsstrahlung emission and the inference of electron flux spectra in solar flares. ApJ 670:857–861, doi:10.1086/521977, arXiv:0707.4225

    Google Scholar 

  • Kopp RA, Pneuman GW (1976) Magnetic reconnection in the corona and the loop prominence phenomenon. Solar Phys 50: 85–98

    Article  ADS  Google Scholar 

  • Korchak AA (1967) Possible mechanisms for generating hard X-rays in solar flares. Sov Astr AJ 11: 258–263

    ADS  Google Scholar 

  • Korchak AA (1971) On the origin of solar flare X-rays. Solar Phys 18: 284–304

    Article  ADS  Google Scholar 

  • Kosugi T, Masuda S, Makishima K, Inda M, Murakami T, Dotani T, Ogawara Y, Sakao T, Kai K, Nakajima H (1991) The hard X-ray telescope (HXT) for the Solar-A mission. Solar Phys 136: 17–36

    Article  ADS  Google Scholar 

  • Kosugi T, Sakao T, Masuda S, Makishima K, Inda M, Murakami T, Ogawara Y, Yaji K, Matsushita K (1992) The Hard X-ray Telescope (HXT) onboard Yohkoh—its performance and some initial results. PASJ 44: L45–L49

    ADS  Google Scholar 

  • Kosugi T, Sakao T, Masuda S, Hara H, Shimizu T, Hudson HS (1994) Hard and Soft X-ray observations of a super-hot thermal flare of 6 February 1992. In: Proceedings of Kofu symposium, pp 127–129

  • Krucker S, Lin RP (2008) Hard X-ray emissions from partially occulted solar flares. ApJ 673: 1181–1187. doi:10.1086/524010

    Article  ADS  Google Scholar 

  • Krucker S, Hannah IG, Lin RP (2007) RHESSI and Hinode X-ray observations of a partially occulted solar flare. ApJL 671: L193–L196. doi:10.1086/525019

    Article  ADS  Google Scholar 

  • Krucker S, White SM, Lin RP (2007) Solar flare hard X-ray emission from the high corona. ApJL 669: L49–L52. doi:10.1086/523759

    Article  ADS  Google Scholar 

  • Krucker S, Hurford GJ, MacKinnon AL, Shih AY, Lin RP (2008) Coronal γ-ray Bremsstrahlung from solar flare-accelerated electrons. ApJL 678: L63–L66. doi:10.1086/588381

    Article  ADS  Google Scholar 

  • Kundu MR (1965) Solar radio astronomy. Interscience Publication, New York

    Google Scholar 

  • Larosa TN, Moore RL (1993) A mechanism for bulk energization in the impulsive phase of solar flares: MHD turbulent cascade. ApJ 418: 912. doi:10.1086/173448

    Article  ADS  Google Scholar 

  • Larosa TN, Moore RL, Miller JA, Shore SN (1996) New promise for electron bulk energization in solar flares: preferential fermi acceleration of electrons over protons in reconnection-driven magnetohydrodynamic turbulence. ApJ 467: 454. doi:10.1086/177619

    Article  ADS  Google Scholar 

  • Leach J, Petrosian V (1981) Impulsive phase of solar flares I. Characteristics of high energy electrons. ApJ 251: 781–791. doi:10.1086/159521

    Google Scholar 

  • Leach J, Petrosian V (1983) The impulsive phase of solar flares. II. Characteristics of the hard X-rays. ApJ 269: 715–727. doi:10.1086/161081

    Article  ADS  Google Scholar 

  • Lee J, Gary DE (2000) Solar microwave bursts and injection pitch-angle distribution of flare electrons. ApJ 543: 457–471

    Article  ADS  Google Scholar 

  • Lee MA, Ryan JM (1986) Time-dependent coronal shock acceleration of energetic solar flare particles. ApJ 303: 829–842. doi:10.1086/164131

    Article  ADS  Google Scholar 

  • Lenters GT, Miller JA (1998) Electron acceleration in solar flares by fast-mode waves: coulomb collisions. ApJ 493:451–+, doi:10.1086/305127

    Google Scholar 

  • Lin RP (1970) The emission and propagation of 40 keV solar flare electrons. II. The electron emission structure of large active regions. Solar Phys 15: 453

    Article  ADS  Google Scholar 

  • Lin RP, Schwartz RA, Pelling RM, Hurley KC (1981) A new component of hard X-rays in solar flares. ApJL 251: L109–L114. doi:10.1086/183704

    Article  ADS  Google Scholar 

  • Lin RP, Dennis BR, Hurford GJ, Smith DM, Zehnder A, Harvey PR, Curtis DW, Pankow D, Turin P, Bester M, Csillaghy A, Lewis M, Madden N, van Beek HF, Appleby M, Raudorf T, McTiernan J, Ramaty R, Schmahl E, Schwartz R, Krucker S, Abiad R, Quinn T, Berg P, Hashii M, Sterling R, Jackson R, Pratt R, Campbell RD, Malone D, Landis D, Barrington-Leigh CP, Slassi-Sennou S, Cork C, Clark D, Amato D, Orwig L, Boyle R, Banks IS, Shirey K, Tolbert AK, Zarro D, Snow F, Thomsen K, Henneck R, Mchedlishvili A, Ming P, Fivian M, Jordan J, Wanner R, Crubb J, Preble J, Matranga M, Benz A, Hudson H, Canfield RC, Holman GD, Crannell C, Kosugi T, Emslie AG, Vilmer N, Brown JC, Johns-Krull C, Aschwanden M, Metcalf T, Conway A (2002) The reuven ramaty high-energy solar spectroscopic imager (RHESSI). Solar Phys 210: 3–32. doi:10.1023/A:1022428818870

    Article  ADS  Google Scholar 

  • Lin RP, Krucker S, Hurford GJ, Smith DM, Hudson HS, Holman GD, Schwartz RA, Dennis BR, Share GH, Murphy RJ, Emslie AG, Johns-Krull C, Vilmer N (2003) RHESSI observations of particle acceleration and energy release in an intense solar gamma-ray line flare. ApJL 595: L69–L76. doi:10.1086/378932

    Article  ADS  Google Scholar 

  • Litvinenko YE (2006) Three-dimensional fan magnetic reconnection and particle acceleration in the solar corona. A&A 452: 1069–1074. doi:10.1051/0004-6361:20054324

    Article  ADS  Google Scholar 

  • Litvinenko YE, Somov BV (1993) Particle acceleration in reconnecting current sheets. Solar Phys 146: 127–133

    Article  ADS  Google Scholar 

  • Liu W, Petrosian V, Dennis BR, Jiang YW (2008) Double coronal Hard and Soft X-ray source observed by RHESSI: evidence for magnetic reconnection and particle acceleration in solar flares. ApJ 676:704–716, doi:10.1086/527538, arXiv:0709.1963

    Google Scholar 

  • MacKinnon AL (1988) Coulomb collisional precipitation of fast electrons in solar flares. A&A 194: 279–287

    ADS  Google Scholar 

  • MacKinnon AL (1991) Collisional scattering of fast electrons in a coronal magnetic bottle. A&A 242: 256–270

    ADS  Google Scholar 

  • Mann G, Classen HT, Motschmann U (2001) Generation of highly energetic electrons by shock waves in the solar corona. JGR 106:25,323–25,332, doi:10.1029/2000JA004010

  • Mann G, Aurass H, Warmuth A (2006) Electron acceleration by the reconnection outflow shock during solar flares. A&A 454: 969–974. doi:10.1051/0004-6361:20064990

    Article  ADS  Google Scholar 

  • Martens PCH, Young A (1990) Neutral beams in two-ribbon flares and in the geomagnetic tail. ApJS 73: 333–342. doi:10.1086/191469

    Article  ADS  Google Scholar 

  • Masuda S (1994) Hard X-ray sources and the primary energy release site in solar flares. PhD thesis, Dissertation, Yohkoh/HXT group, NAO, Mitaka (1994)

  • Masuda S, Kosugi T, Hara H, Tsuneta S, Ogawara Y (1994) A loop-top hard X-ray source in a compact solar flare as evidence for magnetic reconnection. Nature 371: 495. doi:10.1038/371495a0

    Article  ADS  Google Scholar 

  • McClements KG (1990) A Fokker–Planck description of the trapping and precipitation of fast electrons in solar flares. A&A 234: 487–495

    ADS  Google Scholar 

  • McComas DJ, Phillips JL, Hundhausen AJ, Burkepile JT (1992) Disconnection of open coronal magnetic structures. In: Marsch E, Schwenn R (eds) Solar wind seven colloquium, pp 225–228

  • McKenzie DL (1975) Hard X-ray bursts from flare behind the solar limb. Solar Phys 40: 183–191

    Article  ADS  MathSciNet  Google Scholar 

  • McKenzie DE, Hudson HS (1999) X-ray observations of motions and structure above a solar flare arcade. ApJL 519: L93–L96. doi:10.1086/312110

    Article  ADS  Google Scholar 

  • Melrose DB, Brown JC (1976) Precipitation in trap models for solar hard X-ray bursts. MNRAS 176: 15–30

    ADS  Google Scholar 

  • Mewaldt RA, Cohen CMS, Labrador AW, Leske RA, Mason GM, Desai MI, Looper MD, Mazur JE, Selesnick RS, Haggerty DK (2005) Proton, helium, and electron spectra during the large solar particle events of October–November 2003. J Geophys Res (Space Physics) 110:9–+, doi:10.1029/2005JA011038

    Google Scholar 

  • Miller JA (1997) Electron acceleration in solar flares by fast mode waves: quasi-linear theory and pitch-angle scattering. ApJ 491: 939. doi:10.1086/305004

    Article  ADS  Google Scholar 

  • Miller JA, Ramaty R (1987) Ion and relativistic electron acceleration by Alfven and whistler turbulence in solar flares. Solar Phys 113: 195–200

    Article  ADS  Google Scholar 

  • Miller JA, Roberts DA (1995) Stochastic proton acceleration by cascading alfven waves in impulsive solar flares. ApJ 452: 912. doi:10.1086/176359

    Article  ADS  Google Scholar 

  • Miller JA, Larosa TN, Moore RL (1996) Stochastic electron acceleration by cascading fast mode waves in impulsive solar flares. ApJ 461: 445. doi:10.1086/177072

    Article  ADS  Google Scholar 

  • Miller JA, Cargill PJ, Emslie AG, Holman GD, Dennis BR, LaRosa TN, Winglee RM, Benka SG, Tsuneta S (1997) Critical issues for understanding particle acceleration in impulsive solar flares. JGR 102: 14631–14660. doi:10.1029/97JA00976

    Article  ADS  Google Scholar 

  • Moses D, Dröge W, Meyer P, Evenson P (1989) Characteristics of energetic solar flare electron spectra. ApJ 346: 523–530

    Article  ADS  Google Scholar 

  • Murphy RJ, Dermer CD, Ramaty R (1987) High-energy processes in solar flares. ApJS 63: 721–748

    Article  ADS  Google Scholar 

  • Neupert WM (1968) Comparison of solar X-ray line emission with microwave emission during flares. ApJ 153: L59

    Article  ADS  Google Scholar 

  • Nitta N, Dennis BR, Kiplinger AL (1990) X-ray observations of two short but intense solar flares. ApJ 353: 313–322. doi:10.1086/168618

    Article  ADS  Google Scholar 

  • Nitta NV, Sato J, Hudson HS (2001) The physical nature of the loop-top X-ray sources in the gradual phase of solar flares. ApJ 552: 821–832. doi:10.1086/320547

    Article  ADS  Google Scholar 

  • Onofri M, Isliker H, Vlahos L (2006) Stochastic acceleration in turbulent electric fields generated by 3D reconnection. Phys Rev Lett 96(15):151,102, doi:10.1103/PhysRevLett.96.151102, astro-ph/0604192

  • Palmer ID, Smerd SF (1972) Evidence for a two-component injection of cosmic rays from the solar flare of 1969, March 30. Solar Phys 26: 460

    Article  ADS  Google Scholar 

  • Parker EN (1983) Magnetic neutral sheets in evolving fields. Part Two: Formation of the solar corona. ApJ 264: 642. doi:10.1086/160637

    Google Scholar 

  • Parks GK, Winckler JR (1969) Sixteen-second periodic pulsations observed in the correlated microwave and energetic X-ray emission from a solar flare. ApJ 155: L117

    Article  ADS  Google Scholar 

  • Petrosian V, Donaghy TQ (1999) On the spatial distribution of Hard X-rays from solar flare loops. ApJ. 527: 945–957, arXiv:astro-ph/9907181

    Article  ADS  Google Scholar 

  • Petrosian V, Liu S (2004) Stochastic acceleration of electrons and protons. I. Acceleration by parallel-propagating waves. ApJ 610:550–571, doi:10.1086/421486, arXiv:astro-ph/0401585

    Google Scholar 

  • Petrosian V, Donaghy TQ, McTiernan JM (2002) Loop top hard X-ray emission in solar flares: images and statistics. ApJ 569:459–473, doi:10.1086/339240, astro-ph/0112363

    Google Scholar 

  • Phillips KJH (2004) The solar flare 3.8–10 keV X-ray spectrum. ApJ 605: 921–930. doi:10.1086/382523

    Article  ADS  Google Scholar 

  • Pick M, Forbes TG, Mann G, Cane HV, Chen J, Ciaravella A, Cremades H, Howard RA, Hudson HS, Klassen A, Klein KL, Lee MA, Linker JA, Maia D, Mikic Z, Raymond JC, Reiner MJ, Simnett GM, Srivastava N, Tripathi D, Vainio R, Vourlidas A, Zhang J, Zurbuchen TH, Sheeley NR, Marqué C (2006) Multi-wavelength observations of CMEs and associated phenomena. Space Sci Rev 123: 341–382. doi:10.1007/s11214-006-9021-1

    Article  ADS  Google Scholar 

  • Pryadko JM, Petrosian V (1997) Stochastic acceleration of low-energy electrons in cold plasmas. ApJ 482:774–+, doi:10.1086/304168, arXiv:astro-ph/9610148

    Google Scholar 

  • Ramaty R (1979) Energetic particles in solar flares. In: Arons J, McKee C, Max C (eds) Particle acceleration mechanisms in astrophysics, American Institute of Physics Conference Series, vol 56, pp 135–154

  • Reames DV (1999) Particle acceleration at the Sun and in the heliosphere. Space Sci Rev 90: 413–491. doi:10.1023/A:1005105831781

    Article  ADS  Google Scholar 

  • Rieger E, Reppin C, Kanbach G, Forrest DJ, Chupp EL, Share GH (1983) Solar flares with photon emission above 10 MeV—measurements with the gamma ray experiment on board the SMM-satellite. In: International cosmic ray conference, vol 10, pp 338–341

  • Roy JR, Datlowe DW (1975) X-ray bursts from solar flares behind the limb. Solar Phys 40: 165–182

    Article  ADS  Google Scholar 

  • Rybicki GB, Lightman AP (1979) Radiative processes in astrophysics. Wiley, New York

    Google Scholar 

  • Sakao T (1994) Characteristics of solar flare hard X-ray sources as revealed with the Hard X-ray Telescope aboard the Yohkoh satellite. PhD thesis, University of Tokyo

  • Saldanha R, Krucker S, Lin RP (2008) Hard X-ray spectral evolution and production of solar energetic particle events during the January 2005 X-class flares. ApJ 673: 1169–1173. doi:10.1086/524929

    Article  ADS  Google Scholar 

  • Sato J, Matsumoto Y, Yoshimura K, Kubo S, Kotoku J, Masuda S, Sawa M, Suga K, Yoshimori M, Kosugi T, Watanabe T (2006) Yohkoh/WBS Recalibration and a comprehensive catalogue of solar flares observed by Yohkoh SXT, HXT and WBS instruments. Solar Phys 236: 351–368. doi:10.1007/s11207-006-1831-5

    Article  ADS  Google Scholar 

  • Sheeley NR Jr, Warren HP, Wang YM (2004) The origin of postflare loops. ApJ 616: 1224–1231. doi:10.1086/425126

    Article  ADS  Google Scholar 

  • Shibata K (1996) New observational facts about solar flares from studies—Yohkoh evidence of magnetic reconnection and a unified model of flares. Adv Space Res 17:9

    Google Scholar 

  • Shibata K, Masuda S, Shimojo M, Hara H, Yokoyama T, Tsuneta S, Kosugi T, Ogawara Y (1995) Hot-plasma ejections associated with compact-loop solar flares. ApJL 451: L83+. doi:10.1086/309688

    Article  ADS  Google Scholar 

  • Simnett GM (2003) Energetic particles and coronal mass ejections: a case study from ace and ulysses. Solar Phys 213: 387–412

    Article  ADS  Google Scholar 

  • Smith DM, Lin RP, Turin P, Curtis DW, Primbsch JH, Campbell RD, Abiad R, Schroeder P, Cork CP, Hull EL, Landis DA, Madden NW, Malone D, Pehl RH, Raudorf T, Sangsingkeow P, Boyle R, Banks IS, Shirey K, Schwartz R (2002) The RHESSI spectrometer. Solar Phys 210: 33–60. doi:10.1023/A:1022400716414

    Article  ADS  Google Scholar 

  • Somov BV, Bogachev SA (2003) The betatron effect in collapsing magnetic traps. Astron Lett 29: 621–628. doi:10.1134/1.1607500

    Article  ADS  Google Scholar 

  • Somov BV, Kosugi T (1997) Collisionless reconnection and high-energy particle acceleration in solar flares. ApJ 485: 859

    Article  ADS  Google Scholar 

  • Speiser TW, Lyons LR (1984) Comparison of an analytical approximation for particle motion in a current sheet with precise numerical calculations. JGR 89: 147–158

    Article  ADS  Google Scholar 

  • Sprangle P, Vlahos L (1983) Electron cyclotron wave acceleration outside a flaring loop. ApJL 273: L95–L99. doi:10.1086/184137

    Article  ADS  Google Scholar 

  • Stepanov AV, Tsap Y (2002) Electron–whistler interaction in coronal loops and radiation signatures. Solar Phys 211: 135–154

    Article  ADS  Google Scholar 

  • Stepanov AV, Yokoyama T, Shibasaki K, Melnikov VF (2007) Turbulent propagation of high-energy electrons in a solar coronal loop. A&A 465: 613–619. doi:10.1051/0004-6361:20066573

    Article  ADS  Google Scholar 

  • Strong KT, Benz AO, Dennis BR, Poland AI, Leibacher JW, Mewe R, Schrijver J, Simnett G, Smith JB Jr, Sylwester J (1984) A multiwavelength study of a double impulsive flare. Solar Phys 91: 325–344

    Article  ADS  Google Scholar 

  • Sturrock PA (1966) Model of the high-energy phase of solar flares. Nature 211: 695

    Article  ADS  Google Scholar 

  • Sui L, Holman GD (2003) Evidence for the formation of a large-scale current sheet in a solar flare. ApJL 596: L251–L254. doi:10.1086/379343

    Article  ADS  Google Scholar 

  • Sui L, Holman GD, Dennis BR (2004) Evidence for magnetic reconnection in three homologous solar flares observed by RHESSI. ApJ 612: 546–556. doi:10.1086/422515

    Article  ADS  Google Scholar 

  • Sui L, Holman GD, Dennis BR (2006) Motion of 3–6 keV nonthermal sources along the legs of a flare loop. ApJL 645: L157–L160. doi:10.1086/506325

    Article  ADS  Google Scholar 

  • Svestka ZF, Fontenla JM, Machado ME, Martin SF, Neidig DF (1987) Multi-thermal observations of newly formed loops in a dynamic flare. Solar Phys 108: 237–250

    Article  ADS  Google Scholar 

  • Švestka Z, Fárník F, Hudson HS, Hick P (1998) Large-scale active coronal phenomena in Yohkoh/SXT images IV. Solar wind streams from flaring active regions. Solar Phys 182: 179–193. doi:10.1023/A:1005033717284

    Google Scholar 

  • Takakura T, Inda M, Makishima K, Kosugi T, Sakao T, Masuda S, Sakurai T, Ogawara Y (1993) Time variation of the hard X-ray image during the early phase of solar impulsive bursts. PASJ 45: 737–753

    ADS  Google Scholar 

  • Tanaka K (1986) Solar flare X-ray spectra of Fe XXVI and Fe XXV from the HINOTORI satellite. PASJ 38: 225–249

    ADS  Google Scholar 

  • Tomczak M (2001) The analysis of hard X-ray radiation of flares with occulted footpoints. A&A 366: 294–305. doi:10.1051/0004-6361:20000204

    Article  ADS  Google Scholar 

  • Trakhtengerts VY (1984) Relaxation of a plasma with anisotropic velocity distribution. In: Galeev AA, Sudan RN (eds) Basic plasma physics: selected chapters, Handbook of Plasma Physics, vol 1, p 519

  • Trottet G, Vilmer N (1984) Electron spectra deduced from solar hard X-ray bursts. Adv Space Res 4: 153–156. doi:10.1016/0273-1177(84)90305-3

    Article  ADS  Google Scholar 

  • Tsuneta S, Naito T (1998) Fermi acceleration at the fast shock in a solar flare and the impulsive loop-top Hard X-ray source. ApJL 495:L67+,doi:10.1086/311207, arXiv:astro-ph/9801109

  • Tsuneta S, Masuda S, Kosugi T, Sato J (1997) Hot and superhot plasmas above an impulsive flare loop. ApJ 478: 787. doi:10.1086/303812

    Article  ADS  Google Scholar 

  • Tucker RJ (1975) Radiation processes in astrophysics. MIT Press, Cambridge

    Google Scholar 

  • Turkmani R, Vlahos L, Galsgaard K, Cargill PJ, Isliker H (2005) Particle acceleration in stressed coronal magnetic fields. ApJL 620: L59–L62. doi:10.1086/428395

    Article  ADS  Google Scholar 

  • Turkmani R, Cargill PJ, Galsgaard K, Vlahos L, Isliker H (2006) Particle acceleration in stochastic current sheets in stressed coronal active regions. A&A 449: 749–757. doi:10.1051/0004-6361:20053548

    Article  ADS  Google Scholar 

  • van Ballegooijen AA (1986) Cascade of magnetic energy as a mechanism of coronal heating. ApJ 311: 1001–1014. doi:10.1086/164837

    Article  ADS  Google Scholar 

  • van Beek HF, Hoyng P, Lafleur B, Simnett GM (1980) The Hard X-ray imaging spectrometer/HXIS/. Solar Phys 65: 39–52

    Article  ADS  Google Scholar 

  • van den Oord GHJ (1990) The electrodynamics of beam/return current systems in the solar corona. A&A 234: 496–518

    MATH  ADS  Google Scholar 

  • Veronig AM, Brown JC (2004) A coronal thick-target interpretation of two Hard X-ray loop events. ApJL 603: L117–L120. doi:10.1086/383199

    Article  ADS  Google Scholar 

  • Veronig AM, Brown JC, Bone L (2005) Evidence for a solar coronal thick-target hard X-ray source observed by RHESSI. Adv Space Res 35: 1683–1689. doi:10.1016/j.asr.2005.01.065

    Article  ADS  Google Scholar 

  • Veronig AM, Brown JC, Dennis BR, Schwartz RA, Sui L, Tolbert AK (2005) Physics of the Neupert effect: estimates of the effects of source energy, mass transport, and geometry using RHESSI and GOES data. ApJ 621: 482–497. doi:10.1086/427274

    Article  ADS  Google Scholar 

  • Karlicky M, Vršnak B, Temmer M, Magdalenić J, Dennis BR, Otruba W, Pötzi W (2006) X-ray sources and magnetic reconnection in the X3.9 flare of 2003 November 3. A&A 446: 675–690. doi:10.1051/0004-6361:20053112

    Article  ADS  Google Scholar 

  • Vilmer N, Kane SR, Trottet G (1982) Impulsive and gradual hard X-ray sources in a solar flare. A&A 108: 306–313

    ADS  Google Scholar 

  • Vilmer N, MacKinnon AL, Trottet G, Barat C (2003) High energy particles during the large solar flare of 1990 May 24: X/gamma ray observations. A&A 412: 865–874

    Article  ADS  Google Scholar 

  • Wang T, Sui L, Qiu J (2007) Direct observation of high-speed plasma outflows produced by magnetic reconnection in solar impulsive events. ApJL 661: L207–L210. doi:10.1086/519004

    Article  ADS  Google Scholar 

  • Warren HP (2006) Multithread hydrodynamic modeling of a solar flare. ApJ 637:522–530, doi:10.1086/497904, arXiv:astro-ph/0507328

    Google Scholar 

  • Warren HP, Bookbinder JA, Forbes TG, Golub L, Hudson HS, Reeves K, Warshall A (1999) TRACE and Yohkoh observations of high-temperature plasma in a two-ribbon limb flare. ApJL 527: L121–L124. doi:10.1086/312410

    Article  ADS  Google Scholar 

  • Watko JA, Klimchuk JA (2000) Width variations along coronal loops observed by TRACE. Solar Phys 193: 77–92

    Article  ADS  Google Scholar 

  • Wheatland MS, Melrose DB (1995) Interpreting Yohkoh hard and soft X-ray flare observations. Solar Phys 158: 283–299

    ADS  Google Scholar 

  • White SM, Krucker S, Shibasaki K, Yokoyama T, Shimojo M, Kundu MR (2003) Radio and Hard X-ray images of high-energy electrons in an X-class solar flare. ApJL 595: L111–L114. doi:10.1086/379274

    Article  ADS  Google Scholar 

  • Wild JP, Smerd SF, Weiss AA (1963) Solar bursts. ARAA 1: 291. doi:10.1146/annurev.aa.01.090163.001451

    Article  ADS  Google Scholar 

  • Wilhelm K, Curdt W, Marsch E, Schühle U, Lemaire P, Gabriel A, Vial JC, Grewing M, Huber MCE, Jordan SD, Poland AI, Thomas RJ, Kühne M, Timothy JG, Hassler DM, Siegmund OHW (1995) SUMER—Solar ultraviolet measurements of emitted radiation. Solar Phys 162: 189–231. doi:10.1007/BF00733430

    Article  ADS  Google Scholar 

  • Zirin H, Ingham W, Hudson H, McKenzie D (1969) De-occultation X-ray events of 2 December, 1967. Solar Phys 9: 269–277. doi:10.1007/BF02391648

    Article  ADS  Google Scholar 

  • Zharkova VV, Gordovskyy M (2005) Energy spectra of particles accelerated in a reconnecting current sheet with the guiding magnetic field. MNRAS 356:1107–1116. doi:10.1111/j.1365-2966.2004.08532.x, http://adsabs.harvard.edu/abs/2005MNRAS.356.1107Z

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Krucker.

Additional information

The Reuven Ramaty High-Energy Solar Spectroscopic Imager; see Lin et al. (2002).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krucker, S., Battaglia, M., Cargill, P.J. et al. Hard X-ray emission from the solar corona. Astron Astrophys Rev 16, 155–208 (2008). https://doi.org/10.1007/s00159-008-0014-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00159-008-0014-9

Keywords

Navigation