Skip to main content
Log in

Multidisciplinary topology optimization design of cold plate for active phased antenna array

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper proposes a multidisciplinary topology optimization design model and method for the cold plate of active phased antenna array. Aiming at the characteristics of multidisciplinary integration of active phased antenna array, a multidisciplinary analysis model considering the thermal effect is established. Based on the multidisciplinary analysis model of antenna array, topology optimization method is used to establish a multidisciplinary optimal design model for the cold plate of antenna array. Since there is no explicit relationship between the electrical performance indicators of the antenna and the topological design variables, the adjoint method is used to derive the adjoint-governing equations that simultaneously consider fluid flow, system heat dissipation, and antenna electrical performance. The corresponding sensitivity information is obtained by solving the adjoint-governing equation. The correctness and effectiveness of the proposed model and method are verified by typical cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

Download references

Acknowledgements

The work was supported in part by the National Natural Science Foundation of China under Grant 52275270, in part by the National Key R&D Program of China under Grant 2021YFB3900300, and in part by the Fundamental Research Funds for the Central Universities under Grant XJSJ23125 and XJS220401.

Author information

Authors and Affiliations

Authors

Contributions

The share of the author’s contributions in this paper is equal.

Corresponding author

Correspondence to Shunxi Lou.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Replication of results

Upon request, the corresponding author will provide the full set of input parameters and meshes for each validation problems and topology optimization problems presented in the paper.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Responsible Editor: Jianbin Du

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

For the optimization problem listed in Eq. (16), consider the generalized objective function \(W\), the Lagrangian function \(L\) can be constructed by introduce the adjoint variable \({\varvec{\lambda}} = \left( {\tilde{\user2{u}},\tilde{p},\tilde{T}} \right)\)

$$\begin{gathered} L = W + \left\langle {{\varvec{\lambda}},{\varvec{H}}} \right\rangle \hfill \\ \;\;\; = W + \int_{\Omega } {\left( {\rho {\varvec{u}} \cdot \nabla {\varvec{u}} - \mu \nabla \cdot (\nabla {\varvec{u}} + \nabla {\varvec{u}}^{T} ) + \nabla p + \alpha_{f - s} \left( \gamma \right){\varvec{u}}} \right) \cdot \tilde{\user2{u}}d\Omega } \hfill \\ \;\;\;\;\;\;\;\;\; + \int_{\Omega } {\left( { - \rho \nabla \cdot {\varvec{u}}} \right) \cdot \tilde{p}d\Omega } + \int_{\Omega } {\left( {\rho C_{\text{p}} \nabla \cdot {\varvec{u}}T - \nabla \cdot k\left( \gamma \right)\nabla T - Q} \right) \cdot \tilde{T}d\Omega } \hfill \\ \end{gathered},$$
(23)

where \(W = \int_{\Omega } {W_{\Omega } d\Omega } + \int_{\Gamma } {W_{\Gamma } d\Gamma }\) is the generalized objective function, \(W_{\Omega }\) is the domain integration objective function, \(W_{\Gamma }\) is the boundary integration objective function, the adjoint variable \({\varvec{\lambda}} = \left( {\tilde{\user2{u}},\tilde{p},\tilde{T}} \right)\) also known as the Lagrangian multiplier, and the operator \(\left\langle \cdot \right\rangle\) represents the domain integration,\(\left\langle {{\varvec{\lambda}},{\varvec{H}}} \right\rangle = \int_{\Omega } {\left( {{\varvec{\lambda}} \cdot {\varvec{H}}} \right)d\Omega }\).

For the governing equations of multiphysical fields, theoretically, there are \({\varvec{H}} \equiv 0\). Therefore, the Lagrangian function \(L \equiv P_{\text{rad}}\), and the sensitivity of and the objective function to the design variables can also be replaced by the sensitivity of the Lagrangian function to the design variables. It can be obtained from the chain derivation rule

$$\begin{gathered} \frac{dW}{{d\gamma }} = \frac{dL}{{d\gamma }} = \frac{\partial W}{{\partial \gamma }} + \frac{\partial W}{{\partial {\varvec{u}}}}\frac{{\partial {\varvec{u}}}}{\partial \gamma } + \frac{\partial W}{{\partial p}}\frac{\partial p}{{\partial \gamma }} + \frac{\partial W}{{\partial T}}\frac{\partial T}{{\partial \gamma }} \hfill \\ + \frac{{\partial \left\langle {{\varvec{\lambda}},{\varvec{H}}} \right\rangle }}{\partial \gamma } + \frac{{\partial \left\langle {{\varvec{\lambda}},{\varvec{H}}} \right\rangle }}{{\partial {\varvec{u}}}}\frac{{\partial {\varvec{u}}}}{\partial \gamma } + \frac{{\partial \left\langle {{\varvec{\lambda}},{\varvec{H}}} \right\rangle }}{\partial p}\frac{\partial p}{{\partial \gamma }} + \frac{{\partial \left\langle {{\varvec{\lambda}},{\varvec{H}}} \right\rangle }}{\partial T}\frac{\partial T}{{\partial \gamma }} \hfill \\ \end{gathered}.$$
(24)

Because the relationship between the state variable \(\left( {{\varvec{u}},p,T,} \right)\) and the design variable \(\gamma\) is hidden in the governing equation \({\varvec{H}}\), and it cannot be directly obtained. Therefore, the above formula is sorted out

$$\begin{gathered} \frac{dW}{{d\gamma }} = \frac{dL}{{d\gamma }} = \frac{\partial W}{{\partial \gamma }} + \frac{{\partial \left\langle {{\varvec{\lambda}},{\varvec{H}}} \right\rangle }}{\partial \gamma } + \left( {\frac{\partial W}{{\partial {\varvec{u}}}} + \frac{{\partial \left\langle {{\varvec{\lambda}},{\varvec{H}}} \right\rangle }}{{\partial {\varvec{u}}}}} \right)\frac{{\partial {\varvec{u}}}}{\partial \gamma } \hfill \\ + \left( {\frac{\partial W}{{\partial p}} + \frac{{\partial \left\langle {{\varvec{\lambda}},{\varvec{H}}} \right\rangle }}{\partial p}} \right)\frac{\partial p}{{\partial \gamma }} + \left( {\frac{\partial W}{{\partial T}} + \frac{{\partial \left\langle {{\varvec{\lambda}},{\varvec{H}}} \right\rangle }}{\partial T}} \right)\frac{\partial T}{{\partial \gamma }} \hfill \\ \end{gathered}.$$
(25)

According to KKT condition of constrained optimization problem of partial differential equation (Deng et al. 2018)

$$\left\{ \begin{gathered} \frac{\partial L}{{\partial {\varvec{u}}}} = \mathop {\lim }\limits_{h \to 0} \frac{{L({\varvec{u}} + h\hat{\user2{u}}) - L({\varvec{u}})}}{h} = \frac{\partial W}{{\partial {\varvec{u}}}} + \frac{{\partial \left\langle {{\varvec{\lambda}},{\varvec{H}}} \right\rangle }}{{\partial {\varvec{u}}}} = 0 \hfill \\ \frac{\partial L}{{\partial p}} = \mathop {\lim }\limits_{h \to 0} \frac{{L(p + h\hat{p}) - L(p)}}{h} = \frac{\partial W}{{\partial p}} + \frac{{\partial \left\langle {{\varvec{\lambda}},{\varvec{H}}} \right\rangle }}{\partial p} = 0 \hfill \\ \frac{\partial L}{{\partial T}} = \mathop {\lim }\limits_{h \to 0} \frac{{L(T + h\hat{T}) - L(T)}}{h} = \frac{\partial W}{{\partial T}} + \frac{{\partial \left\langle {{\varvec{\lambda}},{\varvec{H}}} \right\rangle }}{\partial T} = 0 \hfill \\ \end{gathered} \right.,$$
(26)

where\(\hat{\user2{u}}\), \(\hat{p},\) and \(\hat{T}\) are respectively the direction of the state variables \({\varvec{u}}\),\(p,\) and \(T\).

Substitute Eq. (26) into Eq. (25), the sensitivity expression of the objective function to the design variable can be obtained:

$$\frac{dW}{{d\gamma }} = \frac{dL}{{d\gamma }} = \frac{\partial W}{{\partial \gamma }} + \frac{{\partial \left\langle {{\varvec{\lambda}},{\varvec{H}}} \right\rangle }}{\partial \gamma },$$
(27)

where

$$\begin{gathered} \left\langle {{\varvec{\lambda}},{\varvec{H}}} \right\rangle = \int_{\Omega } {\left( {\rho {\varvec{u}} \cdot \nabla {\varvec{u}} - \mu \nabla \cdot (\nabla {\varvec{u}} + \nabla {\varvec{u}}^{T} ) + \nabla p + \alpha_{f - s} \left( \gamma \right){\varvec{u}}} \right) \cdot \tilde{\user2{u}}d\Omega } \hfill \\ \;\;\;\; + \int_{\Omega } {\left( { - \rho \nabla \cdot {\varvec{u}}} \right) \cdot \tilde{p}d\Omega } + \int_{\Omega } {\left( {\rho C_{\text{p}} \nabla \cdot {\varvec{u}}T - \nabla \cdot k\left( \gamma \right)\nabla T - Q} \right) \cdot \tilde{T}d\Omega } \hfill \\ \end{gathered}.$$
(28)

Here, the problem of solving the sensitivity of the objective function to the design variable is transformed into the problem of solving the adjoint variable. First, the distribution integral of Eq. (28) is carried out and the Gaussian formula is used for sorting

$$\begin{gathered} \left\langle {{\varvec{\lambda}},{\varvec{H}}} \right\rangle = \int_{\Omega } {\left[ {\rho {\varvec{u}} \cdot \nabla {\varvec{u}} \cdot \tilde{\user2{u}} - \mu (\nabla {\varvec{u}} + \nabla {\varvec{u}}^{T} ):\nabla \tilde{\user2{u}} - p\nabla \cdot \tilde{\user2{u}} + \alpha_{f - s} \left( \gamma \right){\varvec{u}} \cdot \tilde{\user2{u}}} \right]d\Omega } \hfill \\ \;\;\;\;\;\;\;\; + \int_{\Omega } {\left( { - \rho \nabla \cdot {\varvec{u}}} \right) \cdot \tilde{p}d\Omega } + \int_{\Omega } {\left[ {\rho C_{\text{p}} ({\varvec{u}} \cdot \nabla T)\tilde{T} + k\left( \gamma \right)\nabla T \cdot \nabla \tilde{T} - Q\tilde{T}} \right]d\Omega } \hfill \\ \;\;\;\;\;\;\;\; + \int_{\Gamma } {\left[ {p{\mathbf{I}} - \mu (\nabla {\varvec{u}} + \nabla {\varvec{u}}^{T} )} \right] \cdot {\varvec{n}}d\Gamma } - \int_{\Gamma } {k\left( \gamma \right)\tilde{T}\nabla T \cdot {\varvec{n}}d\Gamma } \hfill \\ \end{gathered}.$$
(29)

Substitute Eq. (29) into Eq. (26) and integrate by parts again, it can obtain

$$\left\{ \begin{gathered} \frac{\partial W}{{\partial {\varvec{u}}}} + \int_{\Omega } {\left[ {\nabla \tilde{p} - \mu \nabla \cdot (\nabla \tilde{\user2{u}} + \nabla \tilde{\user2{u}}^{T} ) + \rho \nabla {\varvec{u}} \cdot \tilde{\user2{u}} - \rho {\varvec{u}} \cdot \nabla \tilde{\user2{u}} + \alpha_{f - s} \left( \gamma \right)\tilde{\user2{u}}} \right.} \hfill \\ \left. { + \rho C_{\text{p}} \tilde{T}\nabla T} \right] \cdot \hat{\user2{u}}d\Omega + \int_{{\Gamma_{N} }} {\left\{ {\rho ({\varvec{u}} \cdot {\varvec{n}})\tilde{\user2{u}} + \left[ { - \tilde{p}{\mathbf{I}} + \mu (\nabla \tilde{\user2{u}} + \nabla \tilde{\user2{u}}^{T} )} \right] \cdot {\varvec{n}}} \right\} \cdot \hat{\user2{u}}d\Gamma } = 0 \hfill \\ \frac{\partial W}{{\partial p}} + \int_{\Omega } {\left( { - \hat{p}\nabla \cdot \tilde{\user2{u}}} \right)d\Omega } + \int_{{\Gamma_{D} }} {\hat{p}\tilde{\user2{u}} \cdot {\varvec{n}}d\Gamma } = 0 \hfill \\ \frac{\partial W}{{\partial T}} + \int_{\Omega } { - \left[ {\rho C_{\text{p}} {\varvec{u}} \cdot \nabla \tilde{T} + k\left( \gamma \right)\nabla^{2} \tilde{T}} \right]\hat{T}d\Omega } + \int_{{\Gamma_{N} }} {\left( {\rho C_{\text{p}} \tilde{T}{\varvec{u}} + k\left( \gamma \right)\nabla \tilde{T}} \right) \cdot {\varvec{n}}\hat{T}d\Gamma } = 0 \hfill \\ \end{gathered} \right.$$
(30)

Expanding the generalized objective function and reorganizing the Eq. (28), the adjoint control equation and adjoint boundary conditions for solving the adjoint variables can be obtained.

The adjoint Navier–Stokes equations:

$$\left\{ \begin{gathered} \nabla \cdot \tilde{\user2{u}} = \frac{{\partial W_{\Omega } }}{\partial p}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;in\;\Omega \hfill \\ \nabla \tilde{p} - \mu \nabla \cdot (\nabla \tilde{\user2{u}} + \nabla \tilde{\user2{u}}^{T} ) + \rho \nabla {\varvec{u}} \cdot \tilde{\user2{u}} - \rho {\varvec{u}} \cdot \nabla \tilde{\user2{u}} + \alpha_{f - s} \left( \gamma \right)\tilde{\user2{u}} + \rho C_{\text{p}} \tilde{T}\nabla T \hfill \\ = - \frac{{\partial W_{\Omega } }}{{\partial {\varvec{u}}}} + \nabla \cdot \frac{{\partial W_{\Omega } }}{{\partial \nabla {\varvec{u}}}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;in\;\Omega \hfill \\ \tilde{\user2{u}} \cdot {\varvec{n}} = - \frac{{\partial W_{\Gamma } }}{\partial p}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;on\;\Gamma_{D} \hfill \\ \rho ({\varvec{u}} \cdot {\varvec{n}})\tilde{\user2{u}} + \left[ { - \tilde{p}{\mathbf{I}} + \mu (\nabla \tilde{\user2{u}} + \nabla \tilde{\user2{u}}^{T} )} \right] \cdot {\varvec{n}} = - \frac{{\partial W_{\Omega } }}{{\partial \nabla {\varvec{u}}^{T} }} \cdot {\varvec{n}} - \frac{{\partial W_{\Gamma } }}{{\partial {\varvec{u}}}}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;on\;\Gamma_{F} \hfill \\ \end{gathered} \right.$$
(31)

The adjoint heat transfer equations:

$$\left\{ \begin{gathered} \rho C_{\text{p}} {\varvec{u}} \cdot \nabla \tilde{T} + k\left( \gamma \right)\nabla^{2} \tilde{T} = \frac{{\partial W_{\Omega } }}{\partial T} - \nabla \cdot \frac{{\partial W_{\Omega } }}{\partial \nabla T}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;in\;\Omega \hfill \\ \tilde{T} = 0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;on\;\Gamma_{D} \hfill \\ \left( {\rho C_{\text{p}} \tilde{T}{\varvec{u}} + k\left( \gamma \right)\nabla \tilde{T}} \right) \cdot {\varvec{n}} = - \frac{{\partial W_{\Omega } }}{\partial \nabla T} \cdot {\varvec{n}} - \frac{{\partial W_{\Gamma } }}{\partial T}\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;on\;\Gamma_{D} \hfill \\ \end{gathered} \right.$$
(32)

By replacing the corresponding term in the generalized objective function with the constraint function in Eq. (16), the adjoint-governing equation and adjoint boundary conditions of the constraint function can be obtained. For the optimization problem listed in Eq. (16), the right-hand side terms corresponding to the adjoint equations and adjoint boundary conditions [Eqs. (31), (32)] are listed in Table 4.

Table 4 The right-hand terms of the adjoint equations and adjoint boundary conditions of the optimization problem listed in Eq. (16)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, S., Lou, S., Wang, W. et al. Multidisciplinary topology optimization design of cold plate for active phased antenna array. Struct Multidisc Optim 66, 155 (2023). https://doi.org/10.1007/s00158-023-03618-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00158-023-03618-5

Keywords

Navigation