Skip to main content
Log in

Topology optimization of fluid flow channel in cold plate for active phased array antenna

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This article presents a topology optimization method for the design of the fluid flow channel of cold plate, aiming to solve the problem of heat dissipation for power devices in active phased array antenna (APAA). The density-based topology optimization method is used in the topology optimization design of flow path, in which the conjugate heat transfer analysis is performed. In the numerical experiment, we use the central plane of the cold plate to make a two-dimensional topology optimization, and then the result of two-dimensional topology optimization was used to build the three-dimensional flow channel of cold plate. The results of simulation show that the optimized flow channel has a better ability of heat dissipation compared with the traditional S style flow channel, which provides important reference for engineering application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Amstutz S (2005) The topological asymptotic for the Navier-stokes equations. ESAIM: Contr Optim Ca Var 11(3):401–425

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization—theory, methods and applications. Springer, New York

    MATH  Google Scholar 

  • Borrvall T, Petersson J (2003) Topology optimization of fluids in stokes flow. Int J Numer Methods Fluids 41:77–107

    Article  MathSciNet  MATH  Google Scholar 

  • Brookner E (2007) Phased-array and radar breakthroughs. In: IEEE National Radar Conference, pp 37–42

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49:1–38

    Article  MathSciNet  Google Scholar 

  • Dede E (2009) Multiphysics topology optimization of heat transfer and fluid flow systems. In: Proceedings of the COMSOL users conference

  • Evgrafov A (2005) The limits of porous materials in the topology optimization of stokes flows. Appl Math Optim 52:263–277

    Article  MathSciNet  MATH  Google Scholar 

  • Evgrafov A (2015) On Chebyshev’s method for topology optimization of stokes flows. Struct Multidiscip Optim 51(4):801–811

    Article  MathSciNet  Google Scholar 

  • Gersborg-Hansen A, Sigmund O, Haber RB (2005) Topology optimization of channel flow problems. Struct Multidiscip Optim 30:181–192

    Article  MathSciNet  MATH  Google Scholar 

  • Gersborg-Hansen A, Bendsøe MP, Sigmund O (2006) Topology optimization of heat conduction problems using the finite volume method. Struct Multidiscip Optim 31:251–259

    Article  MathSciNet  MATH  Google Scholar 

  • Guest JK, Prévost JH (2006) Topology optimization of creeping fluid flows using a Darcy-stokes finite element. Int J Numer Methods Eng 66:461–484

    Article  MathSciNet  MATH  Google Scholar 

  • Hoft DJ (1978) Solid state transmit/receive module for the PAVE PAWS (AN/FPS-115) phased Array RADAR. Microw Symp Dig 1978 IEEE-MTT-S Int 78:239–241

    Google Scholar 

  • Jenkins N, Maute K (2015) Level set topology optimization of stationary fluid-structure interaction problems. Struct Multidiscip Optim 52:179–195

    Article  MathSciNet  Google Scholar 

  • Kawamoto A, Matsumori T, Yamasaki S et al (2011) Heaviside projection based topology optimization by a PDE-filtered scalar function. Struct Multidiscip Optim 44:19–24

    Article  MATH  Google Scholar 

  • Koga AA, Lopes ECC, Villa Nova HF et al (2013) Development of heat sink device by using topology optimization. Int J Heat Mass Transf 64:759–772

    Article  Google Scholar 

  • Kondoh T, Matsumori T, Kawamoto A (2012) Drag minimization and lift maximization in laminar flows via topology optimization employing simple objective function expressions based on body force integration. Struct Multidiscip Optim 45(5):693–701

    Article  MathSciNet  MATH  Google Scholar 

  • Marck G, Nemer M, Harion J-L (2013) Topology optimization of heat and mass transfer problems: laminar flow. Numer Heat Transf Part B 63:508–539

    Article  MATH  Google Scholar 

  • Maute K, Allen M (2004) Conceptual design of aeroelastic structures by topology optimization. Struct Multidiscip Optim 27:27–42

    Article  Google Scholar 

  • Novotny AA, Sokolowski J (2013) Topological derivatives in shape optimization. Interaction of mechanics and mathematics series. Springer-Verlag, Berlin

    Book  MATH  Google Scholar 

  • Okkels F, Olesen LH, Bruus H (2005) Application of topology optimization in the design of micro- and nanofluidic systems. NSTI-Nanotech 1:575–578

    Google Scholar 

  • Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier-stokes flow. Int J Numer Methods Eng 65:975–1001

    Article  MathSciNet  MATH  Google Scholar 

  • Plotnikov P, Sokolowski J (2012) Compressible navier-stokes equations. Theory and shape optimization. Springer, Basel

    Book  MATH  Google Scholar 

  • Sá LFN, Amigo RCR, Novotny AA, Silva ECN (2016) Topological derivatives applied to fluid flow channel design optimization problems. Struct Multidiscip Optim 54(2):249–264

    Article  MathSciNet  Google Scholar 

  • Scott M (2003) SAMPSON MFR active phased array antenna. IEEE Int Symp Phased Array Syst Technol 2003:119–123

    Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches: a comparative review. Struct Multidiscip Optim 48:1031–1055

    Article  MathSciNet  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Yaji K, Yamada T, Kubo S et al (2015) A topology optimization method for a coupled thermal-fluid problem using level set boundary expressions. Int J Heat Mass Transf 81:878–888

    Article  Google Scholar 

  • Yoon GH (2012) Topological layout design of electro-fluid-thermal-compliant actuator. Comput Methods Appl Mech Eng 209–212:28–44

    Article  Google Scholar 

  • Zhang YP, Yu XL, Feng QK, Zhang RT (2009) Thermal performance study of integrated cold plate with power module. Appl Therm Eng 29:3568–3573

    Article  Google Scholar 

Download references

Acknowledgements

This study is sponsored by the National Natural Science Foundation of China (Grant Nos. 51490661, 51490660) and National Key Basic Research Program of China (973 Program, Grant No. 2015CB857100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, S., Wang, W., Ge, C. et al. Topology optimization of fluid flow channel in cold plate for active phased array antenna. Struct Multidisc Optim 57, 2223–2232 (2018). https://doi.org/10.1007/s00158-017-1852-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-017-1852-8

Keywords

Navigation