Skip to main content
Log in

Three-dimensional adaptive mesh refinement in stress-constrained topology optimization

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

Structural optimization software that can produce high-resolution designs optimized for arbitrary cost and constraint functions is essential to solve real-world engineering problems. Such requirements are not easily met due to the large-scale simulations and software engineering they entail. In this paper, we present a large-scale topology optimization framework with adaptive mesh refinement (AMR) applied to stress-constrained problems. AMR allows us to save computational resources by refining regions of the domain to increase the design resolution and simulation accuracy, leaving void regions coarse. We discuss the challenges necessary to resolve such large-scale problems with AMR, namely, the need for a regularization method that works across different mesh resolutions in a parallel environment and efficient iterative solvers. Furthermore, the optimization algorithm needs to be implemented with the same discretization that is used to represent the design field. To show the efficacy and versatility of our framework, we minimize the mass of a three-dimensional L-bracket subject to a maximum stress constraint and maximize the efficiency of a three-dimensional compliant mechanism subject to a maximum stress constraint.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. Such data structures are also required in parallel high-order finite difference simulation codes (Tegeler et al. 2017).

  2. The normal gradient ∇n is defined such that ∇na = ∇an

References

  • Aage N, Lazarov B S (2013) Parallel framework for topology optimization using the method of moving asymptotes. Struct Multidiscip Optim 47(4):493–505. https://doi.org/10.1007/s00158-012-0869-2

    Article  MathSciNet  Google Scholar 

  • Aage N, Andreassen E, Lazarov B S (2015) Topology optimization using PETSc: an easy-to-use, fully parallel, open source topology optimization framework. Struct Multidiscip Optim 51(3):565–572. https://doi.org/10.1007/s00158-014-1157-0

    Article  MathSciNet  Google Scholar 

  • Aage N, Andreassen E, Lazarov B S, Sigmund O (2017) Giga-voxel computational morphogenesis for structural design. Nature 550(7674):84

    Article  Google Scholar 

  • Alexandersen J, Sigmund O, Aage N (2016) Large scale three-dimensional topology optimisation of heat sinks cooled by natural convection. Int J Heat Mass Transfer 100:876–891

    Article  Google Scholar 

  • Amstutz S, Novotny A A (2010) Topological optimization of structures subject to von Mises stress constraints. Struct Multidiscip Optim 41(3):407–420. https://doi.org/10.1007/s00158-009-0425-x

    Article  MathSciNet  Google Scholar 

  • Ayachit U (2015) The Paraview guide: a parallel visualization application

  • Balay S, Abhyankar S, Adams MF, Brown J, Brune P, Buschelman K, Dalcin L, Eijkhout V, Gropp WD, Kaushik D, Knepley MG, McInnes LC, Rupp K, Smith BF, Zampini S, Zhang H, Zhang H (2016) PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.7, Argonne National Laboratory

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50 (9):2143–2158. https://doi.org/10.1002/nme.116

    Article  MathSciNet  Google Scholar 

  • Brandts JH, Korotov S, Křížek M (2008) The discrete maximum principle for linear simplicial finite element approximations of a reaction–diffusion problem. Linear Algebra Appl 429(10):2344–2357

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Computer Methods Appl Mech Eng 190(26):3443–3459, https://doi.org/10.1016/S0045-7825(00)00278-4

  • Burman E, Ern A (2004) Discrete maximum principle for Galerkin approximations of the laplace operator on arbitrary meshes. Comptes Rendus Math 338(8):641–646

    Article  MathSciNet  Google Scholar 

  • Burman E, Claus S, Hansbo P, Larson M G, Massing A (2015) CutFEM: Discretizing geometry and partial differential equations. Int J Numer Methods Eng 104(7):472–501. https://doi.org/10.1002/nme.4823

    Article  MathSciNet  Google Scholar 

  • De Leon D M, Alexandersen J, Fonseca J S, Sigmund O (2015) Stress-constrained topology optimization for compliant mechanism design. Struct Multidiscip Optim 52(5):929–943

    Article  MathSciNet  Google Scholar 

  • Evgrafov A, Rupp C J, Maute K, Dunn M L (2008) Large-scale parallel topology optimization using a dual-primal substructuring solver. Struct Multidiscip Optim 36(4):329–345

    Article  MathSciNet  Google Scholar 

  • Eymard R, Gallouët T, Herbin R (2000) Finite volume methods. Handb Numer Anal 7:713–1018

    MathSciNet  MATH  Google Scholar 

  • Kirk BS, Peterson JW, Stogner RH, Carey GF (2006) libMesh: a C++ library for parallel adaptive mesh refinement/coarsening simulations. Eng Comput 22(3–4):237–254. https://doi.org/10.1007/s00366-006-0049-3

  • Lazarov B S, Sigmund O (2011) Filters in topology optimization based on Helmholtz-type differential equations. Int J Numer Methods Eng 86(6):765–781. https://doi.org/10.1002/nme.3072

    Article  MathSciNet  Google Scholar 

  • Leader MK, Chin TW, Kennedy G (2018) High resolution topology optimization of aerospace structures with stress and frequency constraints. In: 2018 Multidisciplinary Analysis and Optimization Conference, pp 4056

  • LLNL (2018) hypre: High Performance Preconditioners. Lawrence Livermore National Laboratory, http://www.llnl.gov/CASC/hypre/

  • Meneghelli L R, Cardoso E L (2013) Design of compliant mechanisms with stress constraints using topology optimization. Springer International Publishing, Cham, pp 35–48. https://doi.org/10.1007/978-3-319-00717-5-3

  • Munro D, Groenwold A (2017) Local stress-constrained and slope-constrained sand topology optimisation. Int J Numer Methods Eng 110(5):420–439. https://doi.org/10.1002/nme.5360

    Article  MathSciNet  Google Scholar 

  • Najafi A R, Safdari M, Tortorelli D A, Geubelle P H (2017) Shape optimization using a NURBS-based interface-enriched generalized FEM. Int J Numer Methods Eng 111(10):927–954

    Article  MathSciNet  Google Scholar 

  • Saxena A, Ananthasuresh G K (2001) Topology optimization of compliant mechanisms with strength considerations*. Mech Struct Mach 29(2):199–221. https://doi.org/10.1081/SME-100104480

    Article  Google Scholar 

  • Schillinger D, Ruess M (2015) The finite cell method: a review in the context of higher-order structural analysis of CAD and image-based geometric models. Arch Comput Methods Eng 22(3):391–455. https://doi.org/10.1007/s11831-014-9115-y

    Article  MathSciNet  Google Scholar 

  • Schwedes T, Ham D A, Funke S W, Piggott M D (2017) Mesh dependence in PDE-constrained optimisation: an application in tidal turbine array layouts. Springer Publishing Company, Incorporated

  • Stolpe M, Svanberg K (2001) An alternative interpolation scheme for minimum compliance topology optimization. Struct Multidiscip Optim 22(2):116–124. https://doi.org/10.1007/s001580100129

    Article  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  Google Scholar 

  • Svanberg K (2002) A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J Optim 12(2):555–573. https://doi.org/10.1137/S1052623499362822

    Article  MathSciNet  Google Scholar 

  • Tegeler M, Shchyglo O, Kamachali R, Monas A, Steinbach I, Sutmann G (2017) Parallel multiphase field simulations with openphase. Comput Phys Commun 215:173–187

    Article  MathSciNet  Google Scholar 

  • Salazar de Troya MA, Tortorelli DA (2018) Adaptive mesh refinement in stress-constrained topology optimization. Struct Multidiscip Optim 58:2369–2386. https://doi.org/10.1007/s00158-018-2084-2

    Article  MathSciNet  Google Scholar 

  • Salazar de Troya MA, Oxberry GM, Petra CG, Tortorelli DA (Under review) Mesh independence in topology optimization. Structural and Multidisciplinary Optimization

  • Verfürth R (1999) A review of a posteriori error estimation techniques for elasticity problems. Comput Methods Appl Mech Eng 176(1-4):419–440

    Article  MathSciNet  Google Scholar 

  • Wang S, Ed S, Paulino G H (2010) Large-scale topology optimization using preconditioned Krylov subspace methods with recycling. Int J Numer Methods Eng 69(12):2441–2468. https://doi.org/10.1002/nme.1798

    Article  MathSciNet  Google Scholar 

  • Wang F, Lazarov B S, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784. https://doi.org/10.1007/s00158-010-0602-y

    Article  Google Scholar 

Download references

Acknowledgments

The author thanks the Livermore Graduate Scholar Program for its support.

Funding

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Salazar de Troya.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Fred van Keulen

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Replication of results

The software used to generate the results shown in Section 5 is property of the US Department of Energy and has not yet been approved for public release, and therefore is not currently openly distributed. The computational meshes used to generate the results can be obtained by contacting the corresponding author. All the details necessary to reproduce the results in Section 5 (loads, boundary conditions, constraints, objectives, optimization parameters, etc.) have been defined in the paper. We summarize the most important parameters in Table 1.

Table 1 Relevant parameters

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salazar de Troya, M.A., Tortorelli, D.A. Three-dimensional adaptive mesh refinement in stress-constrained topology optimization. Struct Multidisc Optim 62, 2467–2479 (2020). https://doi.org/10.1007/s00158-020-02618-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-020-02618-z

Keywords

Navigation