Skip to main content
Log in

Hybrid meta-model-based global optimum pursuing method for expensive problems

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In this work, a hybrid meta-model-based global optimum pursuing (HMGOP) method is proposed for the expensive practical problems. In this method, a so-called important region is constructed using several expensive points. Three representative meta-models will then be used in both the important region and remaining region. A strategy to leave enough space for the remaining region has also been proposed to avoid the undesired points due to the narrow remaining region. The search process in the whole design space will also be carried out to further demonstrate the global optimum. Through test by several two-dimensional (2D) functions, each of which having several local optima, the proposed method shows great ability to escape the trap of the local optima. Through test with six high-dimensional problems, the proposed HMGOP method shows excellent search accuracy, efficiency, and robustness. Then, the proposed HMGOP method is applied in a vehicle lightweight design with 30 design variables, achieving satisfied results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Acar E, Rais-Rohani M (2009) Ensemble of metamodels with optimized weight factors. Struct Multidiscip Optim 37(3):279–294

    Article  Google Scholar 

  • Adorio EP (2005) MVF - multivariate test functions library in c for unconstrained global optimization. www.geocities.ws/eadorio/mvf.pdf

  • Byrd RH, Schnabel RB, Shultz GA (1987) A trust region algorithm for nonlinearly constrained optimization. SIAM J Numer Anal 24(5):1152–1170

    Article  MathSciNet  MATH  Google Scholar 

  • Cai Y, Zhang L, Gu J, Yue Y, Wang Y (2017) Multiple meta-models based design space differentiation method for expensive problems. Struct Multidiscip Optim. https://doi.org/10.1007/s00158-017-1854-6

    Article  MathSciNet  Google Scholar 

  • Cai Y, Zhang L, Gu J, Yue Y, Wang Y (2018) Multiple meta-models based design space differentiation method for expensive problems. Struct Multidiscip Optim 57(6):2249–2258

    Article  MathSciNet  Google Scholar 

  • Celis M, Dennis J, Tapia R (1985) A trust region strategy for nonlinear equality constrained optimization In: Boggs, P.T., Byrd, R.H., Schnabel, R.B., eds., Numerical optimization 1984, SIAM, Philadelphia, pp 71–82

  • Clarke SM, Griebsch JH, Simpson TW (2005) Analysis of support vector regression for approximation of complex engineering analyses. Transactions of ASME, Journal of Mechanical Design 127(6):1077–1087

    Article  Google Scholar 

  • Cressie N (1988) Spatial prediction and ordinary kriging. Math Geol 20(4):405–421

    Article  MathSciNet  MATH  Google Scholar 

  • Cressie NAC (1993) Statistics for spatial data. Revised, John Wiley & Sons, New York

    Book  MATH  Google Scholar 

  • Dyn N, Levin D, Rippa S (1986) Numerical procedures for surface fitting of scattered data by radial basis functions. SIAM J Sci Stat Comput 7(2):639–659

    Article  MATH  Google Scholar 

  • Engelund WC, Douglas OS, Lepsch RA, McMillian MM, Unal R (1993) Aerodynamic configuration design using response surface methodology analysis. Paper presented at the AIAA, Aircraft Design, Systems and Operations Meeting; Aug. 11-13, 1993, Monterey, CA; United States Paper No. AIAA 93-3967,

  • Fadel GM, Cimtalay S (1993) Automatic evaluation of move-limits in structural optimization. Structural Optimization 6(4):233–237

    Article  Google Scholar 

  • Fadel GM, Riley MF, Barthelemy JM (1990) Two point exponential approximation method for structural optimization. Structural Optimization 2(2):117–124

    Article  Google Scholar 

  • Ferreira W, Serpa A (2016) Ensemble of metamodels: the augmented least squares approach. Struct Multidiscip Optim 53(5):1–28

    Article  MathSciNet  Google Scholar 

  • Ferreira W, Serpa A (2018) Ensemble of metamodels: extensions of the least squares approach to efficient global optimization. Struct Multidiscip Optim 57(1):131–159

    Article  MathSciNet  Google Scholar 

  • Forsberg J, Nilsson L (2005) On polynomial response surfaces and kriging for use in structural optimization of crashworthiness. Struct Multidiscip Optim 29:232–243

    Article  Google Scholar 

  • Friedman JH (1991) Multivariate adaptive regression splines. Ann Stat 19(1):1–67

    Article  MathSciNet  MATH  Google Scholar 

  • Gao FL, Bai YC, Lin C, Kim IY (2019) A time-space kriging-based sequential metamodeling approach for multi-objective crashworthiness optimization. Appl Math Model 69:378–404

    Article  MathSciNet  Google Scholar 

  • Goel T, Haftka RT, Shyy W, Queipo NV (2007) Ensemble of surrogates. Struct Multidiscip Optim 33(3):199–216

    Article  Google Scholar 

  • Gu J, Li GY, Dong Z (2012) Hybrid and adaptive meta-model-based global optimization. Eng Optim 44(1):87–104

    Article  Google Scholar 

  • Gu L (2001) A comparison of polynomial based regression models in vehicle safety analysis. Paper presented at the Proceedings 2001 ASME Design Engineering Technical Conferences-Design Automation Conference, ASME, Pittsburgh, PA, September 9-12, Paper No. DETC2001/DAC-21063. New York: ASME,

  • Fang H, MH (2006) Global response approximation with radial basis functions. Eng Optim 38(4):407–424

    Article  MathSciNet  Google Scholar 

  • Hardy RL (1971) Multiquadratic equations of topography and other irregular surfaces. JGeophus Res 76(8):1905–1915

    Article  Google Scholar 

  • Hedar A-R (2005) Test functions for unconstrained global optimization. http://www-optima.amp.i.kyoto-u.ac.jp/member/student/hedar/Hedar_files/TestGO_files/Page2904.htm

  • Yin J, Ng SH, Ng KM (2011) Kriging metamodel with modified nugget-effect: the heteroscedastic variance case. Comput Ind Eng 61(3):760–777

    Article  MathSciNet  Google Scholar 

  • Jie H, Wu Y, Ding J (2015) An adaptive metamodel-based global optimization algorithm for black-box type problems. Eng Optim 47(11):1459–1480

    Article  MathSciNet  Google Scholar 

  • Jin R, Chen W, Simpson TW (2001) Comparative studies of metamodelling techniques under multiple modelling criteria. Struct Multidiscip Optim 23(1):1–13

    Article  Google Scholar 

  • Jones DR, Schonlau M, Welch W (1998) Efficient global optimization of expensive black-box functions. J Glob Optim 13(4):455–492

    Article  MathSciNet  MATH  Google Scholar 

  • Krige DG (1953) A statistical approach to some mine valuation and allied problems on the Witwatersrand. Master’s thesis, University of the Witwatersrand

  • Lee J (2007) A novel three-phase trajectory informed search methodology for global optimization. J Glob Optim 2007(38):61–77

    Article  MathSciNet  MATH  Google Scholar 

  • Lin C, Gao F, Bai Y (2018) An intelligent sampling approach for metamodel-based multi-objective optimization with guidance of the adaptive weighted-sum method. Struct Multidiscip Optim 57(3):1047–1060

    Article  MathSciNet  Google Scholar 

  • Lophaven SN, Nielsen HB, Søndergaard J (2002) DACE - A Matlab kriging toolbox - version 2.0. Report IMM-REP-2002-12, Informatics and Mathematical Modelling, Technical University of Denmark, Kgs. Lyngby, Denmark

  • Myers RH, Montgomery DC, Anderson-Cook CM (2009) Response surface methodology: process and product optimization using designed experiments. John Wiley& Sons, INC., Hoboken, New Jersey

    MATH  Google Scholar 

  • Rodriguez JF, Renaud JE, Watson LT (1998) Trust region augmented Lagrangian methods for sequential response surface approximation and optimization. J Mech Des 120(1):58–66

    Article  Google Scholar 

  • Sacks J, Schiller SB, Welch W (1989a) Designs for computer experiments. Technometrics 31(1):41–47

    Article  MathSciNet  Google Scholar 

  • Sacks J, Welch WJ, Mitchell TJ, Wynn HP (1989b) Design and analysis of computer experiments. Stat Sci 4(4):409–423

    Article  MathSciNet  MATH  Google Scholar 

  • Shin YS, Grandhi RV (2001) A global structural optimization technique using an interval method. Struct Multidiscip Optim 22(5):351–363

    Article  Google Scholar 

  • Simpson TW, Mauery TM, Korte JJ, Mistree F (1998) Comparison of response surface and kriging models for multidisciplinary design optimization. Paper presented at the in AIAA paper 98-4758. 7 th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization

  • Simpson TW, Peplinski JD, Koch PN, Allen JK (2001) Metamodels for computer-based engineering design: survey and recommendations. Eng Comput 17(2):129–150

    Article  MATH  Google Scholar 

  • van Beers WCM, Kleijnen JPC (2003) Kriging for interpolation in random simulation. J Oper Res Soc 54(3):255–262

  • Viana FAC, Haftka RT, Watson LT (2013) Efficient global optimization algorithm assisted by multiple surrogate techniques. J Glob Optim 56(2):669–689

    Article  MATH  Google Scholar 

  • Wang GG (2003) Adaptive response surface method using inherited Latin hypercube design points. Transactions of the ASME, Journal of Mechanical Design 125(2):210–220

    Article  Google Scholar 

  • Wang GG, Dong Z, Aitchisonc P (2001) Adaptive response surface method - a global optimization scheme for approximation-based design problems. Eng Optim 33(6):707–733

    Article  Google Scholar 

  • Wang GG, Shan S (2006) Review of metamodeling techniques in support of engineering design optimization. ASME J Mech Design 129(4):370–380. https://doi.org/10.1115/1.2429697

    Article  Google Scholar 

  • Wang GG, Simpson T (2004) Fuzzy clustering based hierarchical metamodeling for design space reduction and optimization. Eng Optim 36:313–335

    Article  Google Scholar 

  • Wang H, Li E, Li GY, Zhong ZH (2008) A metamodel optimization methodology based on multi-level fuzzy clustering space reduction strategy and its applications. Comput Ind Eng 55(2):503–532

    Article  Google Scholar 

  • Wang LQ, Shan S, Wang GG (2004) Mode-pursuing sampling method for global optimization on expensive black-box functions. Eng Optim 36(4):419–438

    Article  Google Scholar 

  • Wujek BA, Renaud JE (1998a) New adaptive move-limit management strategy for approximate optimization, Part1. AIAA J 36(10):1911–1921

    Article  Google Scholar 

  • Wujek BA, Renaud JE (1998b) New adaptive move-limit management strategy for approximate optimization, Part2. AIAA J 36(10):1922–1934

    Article  Google Scholar 

  • Xiong F, Chen W, Xiong Y, Yang S (2011) Weighted stochastic response surface method considering sample weights. Struct Multidiscip Optim 43(6):837–849. https://doi.org/10.1007/s00158-011-0621-3

    Article  Google Scholar 

  • Younis A, Xu, R., Dong Z (2007) Approximated unimodal region elimination based global optimization method for engineering design. Paper presented at the Proceedings of the ASME 2007 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDET/CIE 2007, Las Vegas, Nevada, USA, September 4–7

  • Zhang J, Chowdhury S, Messac A (2012) An adaptive hybrid surrogate model. Struct Multidiscip Optim 46(2):223–238. https://doi.org/10.1007/s00158-012-0764-x

    Article  Google Scholar 

  • Zhou XJ, ZhongMa Y, Li XF (2011) Ensemble of surrogates with recursive arithmetic average. Struct Multidiscip Optim 44(5):651–671. https://doi.org/10.1007/s00158-011-0655-6

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the National Natural Science Foundation of China under grant number 51505138.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jichao Gu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Responsible editor: Pingfeng Wang

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, J., Zhang, H. & Zhong, X. Hybrid meta-model-based global optimum pursuing method for expensive problems. Struct Multidisc Optim 61, 543–554 (2020). https://doi.org/10.1007/s00158-019-02373-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-019-02373-w

Keywords

Navigation