Skip to main content
Log in

Topology optimization for the computationally poor: efficient high resolution procedures using beam modeling

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A structural optimization approach based on beam modeling is formulated and investigated. Its computational efficiency and enhanced design freedom place it as a computationally cheap alternative to continuum topology optimization. The optimization uses a ground structure parametrization and consists of alternating shape and sizing-topology design phases. The sizing-topology phase controls the thicknesses of tapered beams. Linear constraints applied in the shape phase provide regularity and consistency to the structure and enable the shape design variables to benefit from large freedom of movement. A direct comparison to continuum-based topology optimization shows that the beam-based optimization can offer significant computational savings while generating designs that perform similarly to continuum designs. The result of the beam optimization can be utilized also as an effective starting point for further design iterations on a refined continuum model. The reduced computational effort facilitates the optimization of high resolution structures without separating to micro and macro scales, hence non-uniform and non-periodic porous structures can be designed in a single-level optimization process. Furthermore, the beam modeling allows to impose minimum and maximum length scales explicitly without any additional constraints. The applicability of the suggested approach is demonstrated on several cases of stiffness maximization and mechanism design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Aage N, Andreassen E, Lazarov BS (2014) Topology optimization using petsc: An easy-to-use, fully parallel, open source topology optimization framework. Struct Multidiscip Optim 51(3):565–572

    Article  MathSciNet  Google Scholar 

  • Aage N, Andreassen E, Lazarov BS, Sigmund O (2017) Giga-voxel computational morphogenesis for structural design. Nature 550(7674):84

    Article  Google Scholar 

  • Achtziger W (2007) On simultaneous optimization of truss geometry and topology. Struct Multidiscip Optim 33(4-5):285–304

    Article  MathSciNet  MATH  Google Scholar 

  • Alexandersen J, Lazarov B (2015) Topology optimisation of manufacturable microstructural details without length scale separation using a spectral coarse basis preconditioner. Comput Methods Appl Mech Eng 290:156–182

    Article  MathSciNet  Google Scholar 

  • Andreassen E, Lazarov B, Sigmund O (2014) Design of manufacturable 3d extremal elastic microstructure. Mech Mater 69(1):1–10

    Article  Google Scholar 

  • Bathe K-J (2006) Finite element procedures Klaus-Jurgen Bathe

  • Ben-Tal A, Kočvara M, Zowe J (1993) Two nonsmooth approaches to simultaneous geometry and topology design of trusses. In: Topology Design of Structures. Springer, pp 31–42

  • Bendsøe M, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9):635–654

    MATH  Google Scholar 

  • Bendsøe M, Sigmund O (2003) Topology optimization: theory, methods, and applications Springer Science & Business Media

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50:2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190:3443–3459

    Article  MATH  Google Scholar 

  • Challis V, Roberts A, Grotowski J (2014) High resolution topology optimization using graphics processing units (gpus). Struct Multidiscip Optim 49(2):315–325

    Article  Google Scholar 

  • Christensen PW, Klarbring A (2009) An introduction to structural optimization springer

  • Clausen A, Andreassen E (2017) On filter boundary conditions in topology optimization. Struct Multidiscip Optim 56(5):1147–1155

    Article  MathSciNet  Google Scholar 

  • Cleghorn W, Tabarrok B (1992) Finite element formulation of a tapered timoshenko beam for free lateral vibration analysis. J Sound Vib 152(3):461–470

    Article  MATH  Google Scholar 

  • Deaton J, Grandhi R (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38. https://doi.org/10.1007/s00158-013-0956-z. ISSN 1615-147X

    Article  MathSciNet  Google Scholar 

  • Eisenberger M (1991) Stiffness matrices for non-prismatic members including transverse shear. Comput Struct 40(4):831–835

    Article  Google Scholar 

  • Gavranovic S, Hartmann D, Wever U (2015) Topology optimization using gpgpu. Master’s thesis, Master’s thesis, Technical University Munich

  • Gil L, Andreu A (2001) Shape and cross-section optimisation of a truss structure. Comput Struct 79 (7):681–689

    Article  Google Scholar 

  • Groen J, Sigmund O (2017) Homogenization based topology optimization for high resolution manufacturable micro structures. Int J Numer Methods Eng

  • Guest J (2009) Imposing maximum length scale in topology optimization. Struct Multidiscip Optim 37 (5):463–473

    Article  MathSciNet  MATH  Google Scholar 

  • Guest J, Prévost J, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238– 254

    Article  MathSciNet  MATH  Google Scholar 

  • Lazarov B, Wang F (2017) Maximum length scale in density based topology optimization. Comput Methods Appl Mech Eng

  • Lazarov B, Wang F, Sigmund O (2016) Length scale and manufacturability in density-based topology optimization. Arch Appl Mech 86(1-2):189–218

    Article  Google Scholar 

  • MATLAB (2013) MATLAB version 8.1.0.604 (R2013a). The MathWorks, Natick

    Google Scholar 

  • Ramos JrA., Paulino G (2016) Filtering structures out of ground structures–a discrete filtering tool for structural design optimization. Struct Multidiscip Optim 54(1):95–116

    Article  MathSciNet  Google Scholar 

  • Schmidt S, Schulz V (2011) A 2589 line topology optimization code written for the graphics card. Comput Vis Sci 14(6):249–256

    Article  MathSciNet  MATH  Google Scholar 

  • Schury F (2013) Two Scale Material Design From Theory to Practice. PhD thesis, University of Erlangen Nuremberg, Erlangen, p 6

    Google Scholar 

  • Schury F, Stingl M, Wein F (2012) Efficient two scale optimization of manufacturable graded structures. SIAM J Sci Comput 34(6): B711–B733

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (1994) Materials with prescribed constitutive parameters: an inverse homogenization problem. Int J Solids Struct 31(17):2313–2329

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (2000) A new class of extremal composites. Journal of the Mechanics and Physics of Solids 48 (2):397–428

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O (2009) Manufacturing tolerant topology optimization. Acta Mech Sinica 25(2):227–239

    Article  MATH  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Smith CJ, Gilbert M, Todd I, Derguti F (2016) Application of layout optimization to the design of additively manufactured metallic components. Struct Multidiscip Optim 54(5):1297–1313

    Article  MathSciNet  Google Scholar 

  • Suresh K (2013) Efficient generation of large-scale pareto-optimal topologies. Struct Multidiscip Optim 47 (1):49–61

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotesa new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Wadbro E, Berggren M (2009) Megapixel topology optimization on a graphics processing unit. SIAM Rev 51(4):707–721

    Article  MathSciNet  MATH  Google Scholar 

  • Wang F, Lazarov B, Sigmund O (2011) On projection methods, convergence and robust formulations in topology optimization. Struct Multidiscip Optim 43(6):767–784

    Article  MATH  Google Scholar 

  • Weaver W, Gere J (2012) Matrix analysis framed structures. Springer science & business media

  • Wu J, Aage N, Westermann R, Sigmund O (2016a) Infill optimization for additive manufacturing - approaching bone-like porous structures. arXiv:1608.04366

  • Wu J, Dick C, Westermann R (2016b) A system for high-resolution topology optimization. IEEE Trans Vis Comput Graph 22(3):1195–1208

    Article  Google Scholar 

  • Zegard T, Paulino GH (2013) Toward GPU accelerated topology optimization on unstructured meshes. Struct Multidiscip Optim 48(3):473–485. https://doi.org/10.1007/s00158-013-0920-y

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eilam Amir.

Additional information

Responsible Editor: Jose Herskovits

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amir, E., Amir, O. Topology optimization for the computationally poor: efficient high resolution procedures using beam modeling. Struct Multidisc Optim 59, 165–184 (2019). https://doi.org/10.1007/s00158-018-2058-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-018-2058-4

Keywords

Navigation