Skip to main content
Log in

Topological derivative-based topology optimization of structures subject to design-dependent hydrostatic pressure loading

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

In this paper the topological derivative concept is applied in the context of compliance topology optimization of structures subject to design-dependent hydrostatic pressure loading under volume constraint. The topological derivative represents the first term of the asymptotic expansion of a given shape functional with respect to the small parameter which measures the size of singular domain perturbations, such as holes, inclusions, source-terms and cracks. In particular, the topological asymptotic expansion of the total potential energy associated with plane stress or plane strain linear elasticity, taking into account the nucleation of a circular inclusion with non-homogeneous transmission condition on its boundary, is rigorously developed. Physically, there is a hydrostatic pressure acting on the interface of the topological perturbation, allowing to naturally deal with loading-dependent structural topology optimization. The obtained result is used in a topology optimization algorithm based on the associated topological derivative together with a level-set domain representation method. Finally, some numerical examples are presented, showing the influence of the hydrostatic pressure on the topology of the structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amigo RCR, Giusti SM, Novotny AA, Silva ECN, Sokolowski J (2016) Optimum design of flextensional piezoelectric actuators into two spatial dimensions. SIAM J Control Optim 52(2):760–789

    Article  MathSciNet  MATH  Google Scholar 

  • Ammari H, Kang H (2007) Polarization and moment tensors with applications to inverse problems and effective medium theory Applied Mathematical Sciences, vol 162. Springer-Verlag, New York

    MATH  Google Scholar 

  • Amstutz S (2011) Analysis of a level set method for topology optimization. Optimization Methods and Software 26(4-5):555–573

    Article  MathSciNet  MATH  Google Scholar 

  • Amstutz S, Andrä H (2006) A new algorithm for topology optimization using a level-set method. J Comput Phys 216(2):573–588

    Article  MathSciNet  MATH  Google Scholar 

  • Amstutz S, Novotny AA (2010) Topological optimization of structures subject to von Mises stress constraints. Struct Multidiscip Optim 41(3):407–420

    Article  MathSciNet  MATH  Google Scholar 

  • Amstutz S, Giusti SM, Novotny AA, de Souza Neto EA (2010) Topological derivative for multi-scale linear elasticity models applied to the synthesis of microstructures. Int J Numer Methods Eng 84:733–756

    Article  MathSciNet  MATH  Google Scholar 

  • Amstutz S, Novotny AA, de Souza Neto EA (2012) Topological derivative-based topology optimization of structures subject to Drucker-Prager stress constraints. Comput Methods Appl Mech Eng 233–236:123–136

    Article  MathSciNet  MATH  Google Scholar 

  • Campeão DE, Giusti SM, Novotny AA (2014) Topology design of plates consedering different volume control methods. Eng Comput 31(5):826–842

    Article  Google Scholar 

  • Céa J, Garreau S, Guillaume Ph, Masmoudi M (2000) The shape and topological optimizations connection. Comput Methods Appl Mech Eng 188(4):713–726

    Article  MathSciNet  MATH  Google Scholar 

  • Chen BC, Kikuchi N (2001) Topology optimization with design-dependent loads. Finite Elem Anal Des 37:57–70

    Article  MATH  Google Scholar 

  • Du J, Olhoff N (2004a) Topological optimization of continuum structures with design-dependent surface loading - Part I: new computational approach for 2d problems. Struct Multidiscip Optim 27(3):151–165

    Article  MathSciNet  MATH  Google Scholar 

  • Du J, Olhoff N (2004b) Topological optimization of continuum structures with design-dependent surface loading - Part II: algorithm and examples for 3d problems. Struct Multidiscip Optim 27(3):166–177

    Article  MathSciNet  MATH  Google Scholar 

  • Eshelby JD (1957) The determination of the elastic field of an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society: Section A 241:376–396

    Article  MathSciNet  MATH  Google Scholar 

  • Eshelby JD (1959) The elastic field outside an ellipsoidal inclusion, and related problems. Proceedings of the Royal Society: Section A 252:561–569

    Article  MathSciNet  MATH  Google Scholar 

  • Fuchs MB, Shemesh NNY (2004) Density-based topological design of structures subjected to water pressure using a parametric loading surface. Struct Multidiscip Optim 28(1):11–19

    Article  Google Scholar 

  • Gao T, Zhang W (2009) Topology optimization of multiphase-material structures under design dependent pressure loads. Int J Simul Multidiscip Des Optim 3:297–306

    Article  Google Scholar 

  • Garreau S, Guillaume Ph, Masmoudi M (2001) The topological asymptotic for PDE systems: the elasticity case. SIAM J Control Optim 39(6):1756–1778

    Article  MathSciNet  MATH  Google Scholar 

  • Hammer VB, Olhoff N (2000) Topology optimization of continuum structures subjected to pressure loading. Struct Multidiscip Optim 19:85–92

    Article  Google Scholar 

  • Kachanov M, Shafiro B, Tsukrov I (2003) Handbook of Elasticity Solutions. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Lee E, Martins JRRA (2012) Structural topology optimization with design-dependent pressure loads. Comput Methods Appl Mech Eng 233-236:40–48

    Article  MathSciNet  MATH  Google Scholar 

  • Lopes CG, Santos RB, Novotny AA (2015) Topological derivative-based topology optimization of structures subject to multiple load-cases. Latin American Journal of Solids and Structures 12:834–860

    Article  Google Scholar 

  • Mróz Z, Giusti SM, Sokolowski J, Novotny AA (2017) Topology design of thermomechanical actuators. Struct Multidiscip Optim (to appear):1–15

  • Norato JA, Bendsøe MP, Haber RB, Tortorelli D (2007) A topological derivative method for topology optimization. Struct Multidiscip Optim 33(4–5):375–386

    Article  MathSciNet  MATH  Google Scholar 

  • Novotny AA, Sokołowski J (2013) Topological derivatives in shape optimization. Interaction of Mechanics and Mathematics. Springer-Verlag, Berlin Heidelberg

    Book  MATH  Google Scholar 

  • Novotny AA, Feijóo RA, Padra C, Taroco E (2003) Topological sensitivity analysis. Comput Methods Appl Mech Eng 192(7–8):803–829

    Article  MathSciNet  MATH  Google Scholar 

  • Sá LFN, Amigo RCR, Novotny AA, Silva ECN (2016) Topological derivatives applied to fluid flow channel design optimization problems. Struct Multidiscip Optim 54(2):249–264

    Article  MathSciNet  Google Scholar 

  • Sigmund O, Clausen PM (2007) Topology optimization using a mixed formulation: an alternative way to solve pressure load problems. Comput Methods Appl Mech Eng 196:1874–1889

    Article  MathSciNet  MATH  Google Scholar 

  • Sokołowski J, żochowski A (1999) On the topological derivative in shape optimization. SIAM J Control Optim 37(4):1251– 1272

    Article  MathSciNet  MATH  Google Scholar 

  • Torii AJ, Novotny AA, Santos RB (2016) Robust compliance topology optimization based on the topological derivative concept. Int J Numer Methods Eng 106(11):889–903

    Article  MathSciNet  MATH  Google Scholar 

  • Wang C, Zhao M, Ge T (2016) Structural topology optimization with design-dependent pressure loads. Struct Multidiscip Optim 53(5):1005–1018

    Article  MathSciNet  Google Scholar 

  • Wang MY, Xia Q, Shi T (2015) Topology optimization with pressure load through a level set method. Comput Methods Appl Mech Eng 283:177–195

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

This research was partly supported by CNPq (Brazilian Research Council), CAPES (Brazilian Higher Education Staff Training Agency) and FAPERJ (Research Foundation of the State of Rio de Janeiro). These supports are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Novotny.

Appendix: Topological Derivative Evaluation

Appendix: Topological Derivative Evaluation

In order to evaluate the difference between the functionals \(\mathcal {J}_{\chi }(u)\) and \(\mathcal {J}_{\chi _{\varepsilon }}(u_{\varepsilon })\), respectively defined in (2.7) and (2.18), we start by taking η = u ε u as test function in the variational problem (2.8). Then we have the following equality

$$\begin{array}{@{}rcl@{}} {\int}_{\mathcal{D}} \sigma(u) \cdot \nabla u^{s} &=& {\int}_{\mathcal{D}} \sigma(u) \cdot \nabla u_{\varepsilon}^{s} \\ &&- {\int}_{{\Gamma}_{N}} \overline{q} \cdot (u_{\varepsilon} - u) \\ &&- {\int}_{\omega}p \, \text{div} (u_{\varepsilon} - u). \end{array} $$
(A.1)

After replacing (A.1) into (2.7) we obtain

$$\begin{array}{@{}rcl@{}} \mathcal{J}_{\chi}(u) &=& \frac{1}{2} {\int}_{\mathcal{D}} \sigma(u) \cdot \nabla u_{\varepsilon}^{s} \\ &&- \frac{1}{2} {\int}_{{\Gamma}_{N}} \overline{q} \cdot (u_{\varepsilon}+u) \\ &&- \frac{1}{2} {\int}_{\omega} p \, \text{div}(u_{\varepsilon}+u). \end{array} $$
(A.2)

In the same way, let us set η = u ε u as test function in the variational problem (2.19). Thus

$$\begin{array}{@{}rcl@{}} {\int}_{\mathcal{D}} \sigma_{\varepsilon}(u_{\varepsilon}) \cdot \nabla u_{\varepsilon}^{s} &=& {\int}_{\mathcal{D}} \sigma_{\varepsilon}(u_{\varepsilon}) \cdot \nabla u^{s} \\ &&+ {\int}_{{\Gamma}_{N}} \overline{q} \cdot (u_{\varepsilon} - u) \\ &&+ {\int}_{\omega}p \, \text{div}(u_{\varepsilon} - u) \\ &&+ \kappa {\int}_{B_{\varepsilon}}p \, \text{div}(u_{\varepsilon} - u). \end{array} $$
(A.3)

After replacing (A.3) into (2.18), it follows

$$\begin{array}{@{}rcl@{}} \mathcal{J}_{\chi_{\varepsilon}}(u_{\varepsilon}) &=& \frac{1}{2} \displaystyle{\int}_{\mathcal{D}} \sigma_{\varepsilon}(u_{\varepsilon}) \cdot \nabla u^{s} \\ &&-\frac{1}{2} \displaystyle{\int}_{{\Gamma}_{N}} \overline{q} \cdot (u_{\varepsilon}+u) \\ &&- \frac{1}{2} \displaystyle{\int}_{\omega}p \, \text{div}(u_{\varepsilon}+u) \\ &&- \frac{1}{2} \kappa \displaystyle{\int}_{B_{\varepsilon}} p \, \text{div}(u_{\varepsilon}+u). \end{array} $$
(A.4)

From (A.2) and (A.4), the variation of the energy shape functionals can be written as

$$\begin{array}{@{}rcl@{}} \mathcal{J}_{\chi_{\varepsilon}}(u_{\varepsilon}) - \mathcal{J}_{\chi}(u) &=& \frac{1}{2} {\int}_{\mathcal{D}} \sigma_{\varepsilon}(u_{\varepsilon}) \cdot \nabla u^{s} \\ &&- \frac{1}{2} {\int}_{\mathcal{D}} \sigma(u_{\varepsilon}) \cdot \nabla u^{s} \\ &&- \frac{1}{2} \kappa {\int}_{B_{\varepsilon}} p \, \text{div}(u_{\varepsilon}+u). \end{array} $$
(A.5)

Now, by taking into account the definition for the contrast γ ε given by (2.17), we have

$$\begin{array}{@{}rcl@{}} \mathcal{J}_{\chi_{\varepsilon}}(u_{\varepsilon}) - \mathcal{J}_{\chi}(u) &=& \frac{1}{2} {\int}_{\mathcal{D} \setminus B_{\varepsilon}} \sigma(u_{\varepsilon}) \cdot \nabla u^{s} \\ &&+ \frac{1}{2} {\int}_{B_{\varepsilon}} \gamma \sigma (u_{\varepsilon}) \cdot \nabla u^{s} \\ &&- \frac{1}{2} {\int}_{\mathcal{D} \setminus B_{\varepsilon}} \sigma(u_{\varepsilon}) \cdot \nabla u^{s} \\ &&- \frac{1}{2} {\int}_{B_{\varepsilon}} \sigma(u_{\varepsilon}) \cdot \nabla u^{s} \\ &&- \frac{1}{2} \kappa {\int}_{B_{\varepsilon}} p \, \text{div}(u_{\varepsilon}+u). \end{array} $$
(A.6)

Let us add and subtract the term

$$\begin{array}{@{}rcl@{}} \frac{1}{2}\kappa {\int}_{B_{\varepsilon}} p \, \text{div}(u). \end{array} $$
(A.7)

Thus, the following expression is obtained after canceling the identical terms

$$\begin{array}{@{}rcl@{}} \mathcal{J}_{\chi_{\varepsilon}}(u_{\varepsilon}) - \mathcal{J}_{\chi}(u) &=& \displaystyle{\int}_{B_{\varepsilon}} \frac{\gamma - 1}{2\gamma}\sigma_{\varepsilon}(u_{\varepsilon}) \cdot \nabla u^{s} \\ &&- \kappa \displaystyle{\int}_{B_{\varepsilon}} p \, \text{div}(u) \\ &&- \frac{1}{2}\kappa {\int}_{B_{\varepsilon}} p \, \text{div}(u_{\varepsilon} - u). \end{array} $$
(A.8)

Note that the variation of the energy shape functional results in an integral concentrated into the inclusion B ε . Therefore, in order to apply the definition for the topological derivative given by (2.2), we need to know the asymptotic behavior of the function u ε with respect the small parameter ε. Thus, let us introduce the following ansätz:

$$\begin{array}{@{}rcl@{}} u_{\varepsilon} = u + w_{\varepsilon} + \tilde{u}_{\varepsilon}, \end{array} $$
(A.9)

where u is solution of the unperturbed problem (2.7), w ε is solution to an auxiliary exterior problem and \(\tilde {u}_{\varepsilon }\) is the remainder.

After applying the operator σ ε in the ansätz (A.9) we have

$$\begin{array}{@{}rcl@{}} \sigma_{\varepsilon}(u_{\varepsilon}) = \sigma_{\varepsilon}(u) + \sigma_{\varepsilon}(w_{\varepsilon}) + \sigma_{\varepsilon}(\tilde{u}_{\varepsilon}). \end{array} $$
(A.10)

By expanding σ(u) in Taylor’s series around the point \(\hat {x}\) we obtain

$$\begin{array}{@{}rcl@{}} \sigma_{\varepsilon}(u_{\varepsilon}) &=& \sigma_{\varepsilon}(u)(\hat{x}) \\ &&+\gamma_{\varepsilon} \nabla \sigma(u(\xi))(x - \hat{x}) \\ &&+\sigma_{\varepsilon}(w_{\varepsilon})+\sigma_{\varepsilon}(\tilde{u}_{\varepsilon}), \end{array} $$
(A.11)

where ξ is an intermediate point between x and \(\hat {x}\). On the boundary of the inclusion B ε we have

$$\begin{array}{@{}rcl@{}} [\![ \sigma_{\varepsilon}(u_{\varepsilon}) ]\!]n = -\kappa pn. \end{array} $$
(A.12)

After evaluating (A.12) we obtain

$$\begin{array}{@{}rcl@{}} (\sigma(u_{\varepsilon})_{|_{\mathcal{D} \setminus \overline{B_{\varepsilon}}}} - \gamma \sigma(u_{\varepsilon})_{|_{B_{\varepsilon}}})n = -\kappa pn \quad \text{on} \quad \partial B_{\varepsilon}. \end{array} $$
(A.13)

Then, let us evaluate (A.11) on B ε to have

$$\begin{array}{@{}rcl@{}} -\kappa pn &=& (1 - \gamma) \sigma(u)(\hat{x})n \\ &&- \varepsilon(1 - \gamma) (\nabla \sigma(u(\xi))n)n \\ &&+ [\![ \sigma_{\varepsilon}(w_{\varepsilon})]\!]n + [\![ \sigma_{\varepsilon}(\tilde{u}_{\varepsilon}) ]\!]n, \end{array} $$
(A.14)

since \((x - \hat {x}) = -\varepsilon n\) on B ε . By choosing σ ε (w ε ) such as

$$\begin{array}{@{}rcl@{}} [\![ \sigma_{\varepsilon}(w_{\varepsilon}) ]\!]n = ((\gamma - 1) \sigma(u)(\hat{x}) - \kappa p \mathrm{I})n \quad \text{on} \quad \partial B_{\varepsilon}, \end{array} $$
(A.15)

the following auxiliary boundary value problem is considered and formally obtained when \(\varepsilon \rightarrow 0\): Find σ ε (w ε ) such that:

$$\begin{array}{@{}rcl@{}} \left\{ \begin{array}{l} \begin{array}{rclccccc} \text{div} \sigma_{\varepsilon}(w_{\varepsilon}) & = & 0 & & \text{in} & \mathbb{R}^{2},\\ \sigma_{\varepsilon}(w_{\varepsilon}) &\rightarrow& 0 & & \text{in} & \infty, \\ \left[\!\left[\sigma_{\varepsilon}(w_{\varepsilon})\right]\!\right]n &= &\hat{u} & & \text{on} & \partial B_{\varepsilon}, \end{array} \end{array} \right. \end{array} $$
(A.16)

with \(\hat {u} = ((\gamma - 1) \sigma (u)(\hat {x}) - \kappa p \mathrm {I})n\). The boundary value problem (A.16) admits an explicit solution. For p = 0, its solution can be found in (Novotny and Sokołowski 2013, Ch. 5, pp. 156), for instance. Since the stress σ ε (w ε ) is uniform inside the inclusion, the solution of (A.16) for p ≠ 0 can be written in a following compact form

$$\begin{array}{@{}rcl@{}} \sigma_{\varepsilon}(w_{\varepsilon})_{|_{B_{\varepsilon}}} = \mathbb{T}_{\gamma}\sigma(u)(\hat{x}) + \mathrm{T}_{\gamma}, \end{array} $$
(A.17)

where \(\mathbb {T}_{\gamma }\) is a fourth order isotropic tensor given by

$$\begin{array}{@{}rcl@{}} \mathbb{T}_{\gamma} = \frac{\gamma (1-\gamma)}{2(1 + \beta\gamma)}\left( 2\beta \mathbb{I} + \frac{\alpha - \beta}{1 + \alpha \gamma}\mathrm{I}\otimes\mathrm{I}\right) \end{array} $$
(A.18)

and T γ is a second order isotropic tensor written as

$$\begin{array}{@{}rcl@{}} \mathrm{T}_{\gamma} = \kappa p \frac{\alpha \gamma}{1 + \alpha \gamma} \mathrm{I}. \end{array} $$
(A.19)

The result shown in (A.17) fits the famous Eshelby’s problem. This problem, formulated by Eshelby (1957) and Eshelby (1959), represents one of the major advances in the continuum mechanics theory of the 20th century (Kachanov et al. 2003).

Now we can construct \(\sigma _{\varepsilon }(\tilde {u}_{\varepsilon })\) in such a way that it compensates for the discrepancies introduced by the higher-order terms in ε as well as by the boundary-layer w ε on the exterior boundary \(\partial \mathcal {D}\). It means that the remainder \(\tilde {u}_{\varepsilon }\) must be solution to the following boundary value problem: Find \( \tilde {u}_{\varepsilon }\) such that:

$$ \left\{ \begin{array}{rclccc} \text{div}\sigma_{\varepsilon}(\tilde{u}_{\varepsilon}) &=& 0 & &\text{in}& \mathcal{D},\\ \sigma_{\varepsilon}(\tilde{u}_{\varepsilon}) &=& \gamma_{\varepsilon}\sigma(\tilde{u}_{\varepsilon}),\\ \tilde{u}_{\varepsilon} &=& -w_{\varepsilon} & &\text{on}& {\Gamma}_{D},\\ \sigma(\tilde{u}_{\varepsilon})n &=& -\sigma(w_{\varepsilon})n & &\text{on}& {\Gamma}_{N},\\ \left[\!\left[\sigma_{\varepsilon}(\tilde{u}_{\varepsilon})\right]\!\right]n &=& 0 & &\text{on}& \partial\omega,\\ \begin{array}{r} \left[\!\left[ \tilde{u}_{\varepsilon} \right]\!\right] \\ \left[\!\left[ \sigma_{\varepsilon}(\tilde{u}_{\varepsilon}) \right]\!\right]n \end{array} \!\!\!\! & \begin{array}{c} = \\ = \end{array} & \!\!\!\!\left. \begin{array}{c} 0 \\ \varepsilon h \end{array} \right\} & &\text{on}&\partial B_{\varepsilon} \end{array} \right. $$
(A.20)

with h = (1−γ)(∇σ(u(ξ))n)n. The estimate \(\|\tilde {u}_{\varepsilon }\|_{H^{1}(\mathcal {D})} = O(\varepsilon ^{2})\) for the remainder \(\tilde {u}_{\varepsilon }\) holds true. See, for instance, the book by Novotny and Sokołowski (2013, Ch. 5, pp 155).

From the above results, we can evaluate the integrals in (A.8) explicitly. In fact, after replacing the ansätz for u ε given by (A.9) in the first integral of (A.8) we have

$$\begin{array}{@{}rcl@{}} {\int}_{B_{\varepsilon}} \sigma_{\varepsilon}(u_{\varepsilon}) \cdot \nabla u^{s} &=& \underbrace{{\int}_{B_{\varepsilon}} \sigma_{\varepsilon}(u) \cdot \nabla u^{s}}_{(a)} \\ &&+ \underbrace{{\int}_{B_{\varepsilon}} \sigma_{\varepsilon}(w_{\varepsilon}) \cdot \nabla u^{s}}_{(b)} \\ &&+ \mathcal{E}_{1}(\varepsilon). \end{array} $$
(A.21)

The remainder \(\mathcal {E}_{1}(\varepsilon )\) is given by

$$\begin{array}{@{}rcl@{}} \mathcal{E}_{1}(\varepsilon) &=&{\int}_{B_{\varepsilon}} \sigma_{\varepsilon}(\tilde{u}_{\varepsilon}) \cdot \nabla u^{s} \\ &\leq& \|\sigma_{\varepsilon}(\tilde{u}_{\varepsilon})\|_{L^{2}(B_{\varepsilon})} \|\nabla u \|_{L^{2}(B_{\varepsilon})} \\ &\leq& c_{1}\|\tilde{u}_{\varepsilon}\|_{H^{1}(\mathcal{D})} \| \nabla u \|_{L^{2}(B_{\varepsilon})} \\ &\leq& c_{2} \varepsilon^{3} = O(\varepsilon^{3}), \end{array} $$
(A.22)

where we have used the Cauchy-Schwarz inequality together with the estimation for the remainder \(\tilde {u}_{\varepsilon }\). The term (a) in (A.21) can be developed in power of ε as follows

$$\begin{array}{@{}rcl@{}} {\int}_{B_{\varepsilon}} \sigma_{\varepsilon}(u) \cdot \nabla u^{s} &=& {\int}_{B_{\varepsilon}} \gamma \sigma(u) \cdot \nabla u^{s} \\ &=& \pi \varepsilon^{2} \gamma \sigma(u)(\hat{x}) \cdot \nabla u^{s}(\hat{x}) \\ &&+ \mathcal{E}_{2}(\varepsilon), \end{array} $$
(A.23)

with the remainder \(\mathcal {E}_{2}(\varepsilon )\) defined as

$$\begin{array}{@{}rcl@{}} \mathcal{E}_{2}(\varepsilon) &=& {\int}_{B_{\varepsilon}} (h(x)-h(\hat{x})) \\ &\leq& \| h(x)-h(\hat{x}) \|_{L^{2}(B_{\varepsilon})} \|1\|_{L^{2}(B_{\varepsilon})} \\ &\leq& c_{1} \varepsilon \|x - \hat{x}\|_{L^{2}(B_{\varepsilon})} \leq c_{2} \varepsilon^{3} = O(\varepsilon^{3} ), \end{array} $$
(A.24)

where we have introduced the notation

$$\begin{array}{@{}rcl@{}} h(x)-h(\hat{x}) =\sigma(u)(x)\cdot\nabla u^{s}(x) - \sigma(u)(\hat{x})\cdot\nabla u^{s}(\hat{x}). \end{array} $$
(A.25)

Note that, we have used again the Cauchy-Schwarz inequality and the interior elliptic regularity of function u. Since the exact solution of the auxiliary problem (A.16) is known, the term (b) in (A.21) can be written as

$$\begin{array}{@{}rcl@{}} {\int}_{B_{\varepsilon}} \!\!\sigma_{\varepsilon}(w_{\varepsilon}) \cdot \nabla u^{s} \,=\, \pi \varepsilon^{2} \nabla u^{s}(\hat{x}) \cdot (\mathbb{T}_{\gamma}\sigma(u)(\hat{x}) \,+\, \mathrm{T}_{\gamma}) \,+\, \mathcal{E}_{3}(\varepsilon). \end{array} $$
(A.26)

The remainder \(\mathcal {E}_{3}(\varepsilon )\) is given by

$$\begin{array}{@{}rcl@{}} \mathcal{E}_{3}(\varepsilon) &=& {\int}_{B_{\varepsilon}} \sigma_{\varepsilon}(w_{\varepsilon}) \cdot (\nabla u^{s} - \nabla u^{s}(\hat{x})) \\ &\leq& \| \sigma_{\varepsilon}(w_{\varepsilon})\|_{L^{2}(B_{\varepsilon})} \| \nabla u-\nabla u(\hat{x})\|_{L^{2}(B_{\varepsilon})} \\ &\leq& c_{1} \varepsilon \|x - \hat{x}\|_{L^{2}(B_{\varepsilon})} \leq c_{2}\varepsilon^{3} = O (\varepsilon^{3}), \end{array} $$
(A.27)

where we have used again the Cauchy-Schwarz inequality and the interior elliptic regularity of function u.

The second term in (A.8) can be developed as follows

$$ \kappa {\int}_{B_{\varepsilon}}p \, \text{div}(u) = \pi \varepsilon^{2} \kappa p \, \text{div}(u)(\hat{x}) + \mathcal{E}_{4}(\varepsilon), $$
(A.28)

where the remainder \(\mathcal {E}_{4}(\varepsilon )\) is defined as

$$\begin{array}{@{}rcl@{}} \mathcal{E}_{4}(\varepsilon) &=& \kappa {\int}_{B_{\varepsilon}} p(\text{div}(u) - \text{div}(u)(\hat{x})) \\ &\leq& c_{1} \| x-\hat{x} \|_{L^{2}(B_{\varepsilon})} \| 1 \|_{L^{2}(B_{\varepsilon})} \\ &\leq& c_{2} \varepsilon^{3} = O(\varepsilon^{3}). \end{array} $$
(A.29)

Once again, we have used the Cauchy-Schwarz inequality together with the interior elliptic regularity of function u.

After replacing the ansätz for u ε given by (A.9) into the last term of (A.8) we have

$$\begin{array}{@{}rcl@{}} \frac{1}{2} \kappa {\int}_{B_{\varepsilon}}p \, \text{div}(u_{\varepsilon} - u) &=& \frac{1}{2} \kappa {\int}_{B_{\varepsilon}}p \, \text{div}(w_{\varepsilon} + \tilde{u}_{\varepsilon}) \\ &=& \frac{1}{2} \kappa {\int}_{B_{\varepsilon}}p \, \text{div}(w_{\varepsilon}) \\ &&+\mathcal{E}_{5}(\varepsilon). \end{array} $$
(A.30)

where the remainder \(\mathcal {E}_{5}(\varepsilon )\) has the following bound thanks to the estimate for \(\tilde {u}_{\varepsilon }\)

$$\begin{array}{@{}rcl@{}} \mathcal{E}_{5}(\varepsilon) &=& \frac{1}{2} \kappa {\int}_{B_{\varepsilon}}p \, \text{div}(\tilde{u}_{\varepsilon}) \\ &\leq& c_{1} \| \nabla \tilde{u}_{\varepsilon} \|_{L^{2}(B_{\varepsilon})} \| 1 \|_{L^{2}(B_{\varepsilon})} \\ &\leq& c_{2} \varepsilon \| \tilde{u}_{\varepsilon} \|_{H^{1}(\mathcal{D})} \leq c_{2} \varepsilon^{3} = O(\varepsilon^{3}). \end{array} $$
(A.31)

By using the constitutive relation and after algebraic manipulations, we have

$$\begin{array}{@{}rcl@{}} \frac{1}{2} \kappa {\int}_{B_{\varepsilon}}p \, \text{div}(w_{\varepsilon}) = \frac{1}{2} \kappa {\int}_{B_{\varepsilon}} \frac{p}{2 \gamma \rho (\mu + \lambda)} \text{tr}\sigma_{\varepsilon}(w_{\varepsilon}), \end{array} $$
(A.32)

where trσ ε (w ε ), evaluated inside the inclusion, is given by

$$\begin{array}{@{}rcl@{}} \text{tr} \sigma_{\varepsilon}(w_{\varepsilon})_{|_{B_{\varepsilon}(\hat{x})}} = \frac{\alpha \gamma}{1 + \alpha \gamma}((1-\gamma)\text{tr}\sigma(u)(\hat{x}) + 2\kappa p). \end{array} $$
(A.33)

From the above results, the variation of the energy shape functionals, given by (A.8), can be developed in power of ε as follows

$$\begin{array}{@{}rcl@{}} &&\mathcal{J}_{\chi_{\varepsilon}}(u_{\varepsilon}) - \mathcal{J}_{\chi}(u) = \\ &&-\pi \varepsilon^{2} \frac{1 - \gamma}{2\gamma} \left[\gamma \sigma(u)(\hat{x}) + (\mathbb{T}_{\gamma}\sigma(u)(\hat{x}) + \mathrm{T}_{\gamma})\right] \cdot \nabla u^{s}(\hat{x}) \\ &&-\pi \varepsilon^{2} \kappa p \, \text{div}(u)(\hat{x}) -\pi \varepsilon^{2} \frac{\alpha}{2}\frac{1-\gamma}{1+\alpha \gamma} \kappa p \, \text{div}(u)(\hat{x}) \\ &&-\pi \varepsilon^{2} \frac{p^{2}}{2\mu \rho (1+\alpha \gamma)} +\sum\limits_{i=1}^{5} \mathcal{E}_{i}(\varepsilon), \end{array} $$
(A.34)

where the remainders \(\mathcal {E}_{i}(\varepsilon ) = o(\varepsilon ^{2})\), for i = 1,...,5, as previously shown. By defining the function f(ε) = π ε 2 and after applying the topological derivative concept in (A.34), we obtain

$$\begin{array}{@{}rcl@{}} D_{T} \mathcal{J}_{\chi}(\hat{x}) &=& -\mathbb{P}_{\gamma}\sigma(u)(\hat{x}) \cdot \nabla u^{s}(\hat{x}) \\ &&- \frac{1+\alpha}{1+\alpha \gamma}\kappa p \, \text{div}(u)(\hat{x}) \\ &&- \frac{1}{2 \rho \mu} \frac{p^{2}}{(1+\alpha \gamma)}, \end{array} $$
(A.35)

where \(\mathbb {P}_{\gamma }\) is a fourth order isotropic tensor given by Ammari and Kang (2007)

$$ \mathbb{P}_{\gamma} = \frac{1}{2}\frac{1-\gamma}{1+\beta \gamma}\left( (1+\beta)\mathbb{I} + \frac{1}{2}(\alpha - \beta)\frac{1-\gamma}{1+\alpha \gamma}\mathrm{I} \otimes \mathrm{I}\right), $$
(A.36)

with the coefficients α and β defined as

$$\begin{array}{@{}rcl@{}} \alpha = \frac{\lambda + \mu}{\mu} \quad \text{and} \quad \beta = \frac{\lambda + 3\mu}{\lambda + \mu}. \end{array} $$
(A.37)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xavier, M., Novotny, A.A. Topological derivative-based topology optimization of structures subject to design-dependent hydrostatic pressure loading. Struct Multidisc Optim 56, 47–57 (2017). https://doi.org/10.1007/s00158-016-1646-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1646-4

Keywords

Navigation