Skip to main content
Log in

Topology optimization of structures with anisotropic plastic materials using enhanced assumed strain elements

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

The focus of this paper is on consistent and accurate adjoint sensitivity analyses for structural topology optimization with anisotropic plastic materials under plane strain conditions. In order to avoid the locking issue, the Enhanced Assumed Strain (EAS) elements are adopted in the finite element discretization, and the anisotropic Hoffman plasticity model, which can simulate the strength differences in tension and compression, is incorporated within the framework of density-based topology optimization. The path-dependent sensitivity analysis is presented wherein the enhanced element parameters are consistently incorporated in the constraints. The objective of topology optimization is to maximize the plastic work. Several numerical examples are presented to show the effectiveness of the proposed framework. The results illustrate that the optimized topologies are highly dependent on the plastic anisotropic material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393

    Article  MathSciNet  MATH  Google Scholar 

  • Armero F (2000) On the locking and stability of finite elements in finite deformation plane strain problems. Comput Struct 75(3):261–290. doi:10.1016/S0045-7949(99)00136-4

    Article  Google Scholar 

  • Banabic D (2010) Plastic Behaviour of Sheet Metal. In: Sheet Metal Forming Processes: Constitutive Modelling and Numerical Simulation. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 27–140. doi: 10.1007/978-3-540-88113-1_2

  • Barlat F, Lian K (1989) Plastic behavior and stretchability of sheet metals. Part I: a yield function for orthotropic sheets under plane stress conditions. Int J Plast 5(1):51–66. doi:10.1016/0749-6419(89)90019-3

    Article  Google Scholar 

  • Bazeley G, Cheung YK, Irons BM, Zienkiewicz O Triangular elements in plate bending—conforming and nonconforming solutions. In: Proceedings of the Conference on Matrix Methods in Structural Mechanics, 1965. Wright Patterson AF Base, Ohio, pp 547–576

  • Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Optim 1(4):193–202

    Article  Google Scholar 

  • Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224

    Article  MathSciNet  MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9–10):635–654

    MATH  Google Scholar 

  • Bendsøe MP, Sigmund O (2003) Topology optimization: theory, methods and applications, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Bogomolny M, Amir O (2012) Conceptual design of reinforced concrete structures using topology optimization with elastoplastic material modeling. Int J Numer Methods Eng 90(13):1578–1597

    Article  MATH  Google Scholar 

  • Bruggi M (2016a) A numerical method to generate optimal load paths in plain and reinforced concrete structures. Comput Struct 170:26–36

  • Bruggi M (2016b) Topology optimization with mixed finite elements on regular grids. Comput Methods Appl Mech Eng 305:133–153

  • Bruggi M, Cinquini C (2009) An alternative truly-mixed formulation to solve pressure load problems in topology optimization. Comput Methods Appl Mech Eng 198(17–20):1500–1512. doi:10.1016/j.cma.2008.12.009

    Article  MATH  Google Scholar 

  • Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46(3):369–384

    Article  MathSciNet  MATH  Google Scholar 

  • Bruggi M, Duysinx P (2013) A stress–based approach to the optimal design of structures with unilateral behavior of material or supports. Struct Multidiscip Optim 48(2):311–326

    Article  MathSciNet  Google Scholar 

  • Bruggi M, Venini P (2008) A mixed FEM approach to stress-constrained topology optimization. Int J Numer Methods Eng 73(12):1693–1714. doi:10.1002/nme.2138

    Article  MathSciNet  MATH  Google Scholar 

  • Buhl T, Pedersen CB, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19(2):93–104

    Article  Google Scholar 

  • Christensen PW, Klarbring A (2008) An introduction to structural optimization, vol 153. Springer Science & Business Media

  • Crisfield M (1997) Non-linear finite element analysis of solids and structures: Volume 1 Essentials. John Wiley & Sons

  • De Borst R, Feenstra PH (1990) Studies in anisotropic plasticity with reference to the Hill criterion. Int J Numer Methods Eng 29(2):315–336

    Article  MATH  Google Scholar 

  • de Souza Neto EA, Peric D, Owen DRJ (2011) Computational methods for plasticity: theory and applications. John Wiley & Sons

  • Deaton JD, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38

    Article  MathSciNet  Google Scholar 

  • Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review*. Appl Mech Rev 54(4):331–390

    Article  Google Scholar 

  • Glaser S, Armero F (1997) On the formulation of enhanced strain finite elements in finite deformations. Eng Comput 14(7):759–791. doi:10.1108/02644409710188664

    Article  MATH  Google Scholar 

  • Hashagen F, de Borst R (2001) Enhancement of the Hoffman yield criterion with an anisotropic hardening model. Comput Struct 79(6):637–651. doi:10.1016/S0045-7949(00)00164-4

    Article  Google Scholar 

  • Jang G-W, Kim YY (2009) Topology optimization with displacement-based nonconforming finite elements for incompressible materials. J Mech Sci Technol 23(2):442–451. doi:10.1007/s12206-008-1114-1

    Article  Google Scholar 

  • Jones RM (1998) Mechanics of composite materials. CRC press

  • Kasper EP, Taylor RL (1997) A Mixed Enhanced Strain Method: Linear Problems Department of Civil and Environmental Engineering, University of California at Berkeley; Report No.: UCB/SEMM-97/02, Berkeley

  • Kasper EP, Taylor RL (2000) A mixed-enhanced strain method: part I: geometrically linear problems. Comput Struct 75(3):237–250. doi:10.1016/S0045-7949(99)00134-0

    Article  Google Scholar 

  • Kato J, Hoshiba H, Takase S, Terada K, Kyoya T (2015) Analytical sensitivity in topology optimization for elastoplastic composites. Struct Multidiscip Optim 52(3):507–526

    Article  MathSciNet  Google Scholar 

  • Kiran R, Li L, Khandelwal K (2015) Performance of cubic convergent methods for implementing nonlinear constitutive models. Comput Struct 156:83–100. doi:10.1016/j.compstruc.2015.04.011

    Article  Google Scholar 

  • Klarbring A, Strömberg N (2013) Topology optimization of hyperelastic bodies including non-zero prescribed displacements. Struct Multidiscip Optim 47(1):37–48

    Article  MathSciNet  MATH  Google Scholar 

  • Koh CG, Owen DRJ, Perić D (1995) Explicit dynamic analysis of elasto-plastic laminated composite shells: implementation of non-iterative stress update schemes for the Hoffman yield criterion. Comput Mech 16(5):307–314. doi:10.1007/bf00350720

    Article  MATH  Google Scholar 

  • Korelc J, Wriggers P (1996) An efficient 3D enhanced strain element with Taylor expansion of the shape functions. Comput Mech 19(2):30–40. doi:10.1007/bf02757781

    Article  MATH  Google Scholar 

  • Korelc J, Wriggers P (1997) Improved enhanced strain four-node element with Taylor expansion of the shape functions. Int J Numer Methods Eng 40(3):407–421. doi:10.1002/(sici)1097-0207(19970215)40:3<407::aid-nme70>3.0.co;2-p

    Article  MathSciNet  Google Scholar 

  • Li L, Khandelwal K (2014) Two-point gradient-based MMA (TGMMA) algorithm for topology optimization. Comput Struct 131:34–45

    Article  Google Scholar 

  • Li L, Khandelwal K (2015a) Topology optimization of structures with length-scale effects using elasticity with microstructure theory. Comput Struct 157:165–177

  • Li L, Khandelwal K (2015b) Volume preserving projection filters and continuation methods in topology optimization. Eng Struct 85:144–161

  • Li X, Duxbury PG, Lyons P (1994) Considerations for the application and numerical implementation of strain hardening with the hoffman yield criterion. Comput Struct 52(4):633-644. doi:10.1016/0045-7949(94)90345-X

  • Lindgaard E, Dahl J (2013) On compliance and buckling objective functions in topology optimization of snap-through problems. Struct Multidiscip Optim 47(3):409–421

    Article  MathSciNet  MATH  Google Scholar 

  • Luo Y, Kang Z (2012) Topology optimization of continuum structures with Drucker–Prager yield stress constraints. Comput Struct 90:65–75

    Article  Google Scholar 

  • Maute K, Schwarz S, Ramm E (1998) Adaptive topology optimization of elastoplastic structures. Struct Optim 15(2):81–91

    Article  Google Scholar 

  • Michaleris P, Tortorelli DA, Vidal CA (1994) Tangent operators and design sensitivity formulations for transient non‐linear coupled problems with applications to elastoplasticity. Int J Numer Methods Eng 37(14):2471–2499

    Article  MATH  Google Scholar 

  • Nakshatrala P, Tortorelli D (2015) Topology optimization for effective energy propagation in rate-independent elastoplastic material systems. Comput Methods Appl Mech Eng 295:305–326

    Article  MathSciNet  Google Scholar 

  • Rozvany G, Zhou M (1991) Applications of the COC algorithm in layout optimization. In: Engineering optimization in design processes. Springer, pp 59–70

  • Schellekens JCJ, de Borst R (1990) The use of the Hoffman yield criterion in finite element analysis of anisotropic composites. Comput Struct 37(6):1087–1096. doi:10.1016/0045-7949(90)90020-3

    Article  Google Scholar 

  • Schwarz S, Ramm E (2001) Sensitivity analysis and optimization for non-linear structural response. Eng Comput 18(3/4):610–641

    Article  MATH  Google Scholar 

  • Schwarz S, Maute K, Ramm E (2001) Topology and shape optimization for elastoplastic structural response. Comput Methods Appl Mech Eng 190(15):2135–2155

    Article  MATH  Google Scholar 

  • Sigmund O, Clausen PM (2007) Topology optimization using a mixed formulation: an alternative way to solve pressure load problems. Comput Methods Appl Mech Eng 196(13–16):1874–1889. doi:10.1016/j.cma.2006.09.021

    Article  MathSciNet  MATH  Google Scholar 

  • Sigmund O, Maute K (2013) Topology optimization approaches. Struct Multidiscip Optim 48(6):1031–1055

    Article  MathSciNet  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68–75

    Article  Google Scholar 

  • Simo JC, Armero F (1992) Geometrically non-linear enhanced strain mixed methods and the method of incompatible modes. Int J Numer Methods Eng 33(7):1413–1449. doi:10.1002/nme.1620330705

    Article  MATH  Google Scholar 

  • Simo JC, Rifai MS (1990) A class of mixed assumed strain methods and the method of incompatible modes. Int J Numer Methods Eng 29(8):1595–1638. doi:10.1002/nme.1620290802

    Article  MathSciNet  MATH  Google Scholar 

  • Simo JC, Armero F, Taylor RL (1993) Improved versions of assumed enhanced strain tri-linear elements for 3D finite deformation problems. Comput Methods Appl Mech Eng 110(3):359–386. doi:10.1016/0045-7825(93)90215-J

    Article  MATH  Google Scholar 

  • Svanberg K (1987) The method of moving asymptotes- a new method for structural optimization. Int J Numer Methods Eng 24(2):359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Wallin M, Jönsson V, Wingren E (2016) Topology optimization based on finite strain plasticity. Structural and Multidisciplinary Optimization: 1–11

  • Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1):227–246

    Article  MathSciNet  MATH  Google Scholar 

  • Wilson E, Taylor R, Doherty W, Ghaboussi J (1973) Incompatible displacement models. In: Fenves S, Perrone N, Robinson A, Schnobrich W (eds) Numerical and computer methods in structural mechanics. Academic, New York, pp 43–57

    Google Scholar 

  • Xie Y, Steven GP (1993) A simple evolutionary procedure for structural optimization. Comput Struct 49(5):885–896

    Article  Google Scholar 

Download references

Acknowledgments

The presented work is supported in part by the US National Science Foundation through Grant CMS-1055314. Any opinions, findings, conclusions, and recommendations expressed in this paper are those of the authors and do not necessarily reflect the views of the sponsors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kapil Khandelwal.

Appendices

Appendix A: Elastic predictor/return-mapping algorithm and consistent tangent modulus

Numerical implementation of the Hoffman anisotropic model discussed in Section 3 is presented in this Appendix. In the context of strain-driven finite element formulation, for the given data at an integration point: \( {\overline{\boldsymbol{\varepsilon}}}_m^p \) and α m at step m, and \( \overline{\boldsymbol{\varepsilon}} \) at current step (i.e. step m + 1), the goal is to find the unknown variables: \( {\overline{\boldsymbol{\varepsilon}}}^p \), α together with the consistent tangent moduli \( {\overline{\boldsymbol{C}}}_T \) at the current step. The consistent evaluation of the tangent operator \( {\overline{\boldsymbol{C}}}_T \) ensures the quadratic convergence of the global NR solver. Note that the subscript (m + 1) of the variables at current step is omitted for the sake of clarity, also the step index is put at subscript instead of superscript, and the element number, integration point number are removed for clarity. An elastic predictor/return-mapping algorithm is employed for solving the constitutive model as follows:

  1. Step 1:

    Elastic trial step

Given: \( {{\overline{\boldsymbol{\varepsilon}}}^p}^{tr}={\overline{\boldsymbol{\varepsilon}}}_m^p\kern0.5em ,\kern0.75em {\alpha}^{tr}={\alpha}_m \)

Evaluate:

$$ \begin{array}{l}{\overline{\boldsymbol{\sigma}}}^{tr}={\overline{\boldsymbol{C}}}^e\left(\overline{\boldsymbol{\varepsilon}}-{{\overline{\boldsymbol{\varepsilon}}}^p}^{tr}\right)\kern0.5em \\ {}{\zeta}^{tr}=1+\left(\frac{K^p}{\sigma_y}\right){\alpha}^{tr}\\ {}{\phi}^{tr}\left({\overline{\boldsymbol{\sigma}}}^{tr},{\zeta}^{tr}\right)=f\left({\overline{\boldsymbol{\sigma}}}^{tr}\right)-{\zeta^{tr}}^2\end{array} $$
(A1)

If ϕ tr ≤ 0 then the current step is an elastic step and the following elastic updates are made

$$ {\overline{\boldsymbol{\varepsilon}}}^p={{\overline{\boldsymbol{\varepsilon}}}^p}^{tr}, \alpha ={\alpha}^{tr}\kern1em \mathrm{and}\kern0.5em \overline{\boldsymbol{\sigma}}={\overline{\boldsymbol{\sigma}}}^{tr} $$
(A2)
$$ {\overline{\boldsymbol{C}}}_T={\overline{\boldsymbol{C}}}^e $$
(A3)

where \( {\overline{\boldsymbol{C}}}_T \) is the consistent tangent moduli. Else, if ϕ tr > 0 then there is a plastic flow in this step and the algorithm proceeds to Step 2.

  1. Step 2:

    Plastic return mapping

In this step, plastic flow is nonzero (γ > 0). Using backward Euler method the flow rules in (17) and (18) are discretized as

$$ {\overline{\boldsymbol{\varepsilon}}}^p={\overline{\boldsymbol{\varepsilon}}}_m^p+\Delta \gamma \left(\boldsymbol{P}\overline{\boldsymbol{\sigma}}+\boldsymbol{q}\right) $$
(A4)
$$ \begin{array}{l}\alpha ={\alpha}_m+\sqrt{\frac{2}{3}}\Delta \gamma {z}^{1/2}\\ {}z\overset{\mathrm{def}}{=}{\left(\boldsymbol{P}\overline{\boldsymbol{\sigma}}+\boldsymbol{q}\right)}^T\boldsymbol{Z}\left(\boldsymbol{P}\overline{\boldsymbol{\sigma}}+\boldsymbol{q}\right)\end{array} $$
(A5)

The stress \( \overline{\boldsymbol{\sigma}} \) updates can be written as

$$ \overline{\boldsymbol{\sigma}}={\overline{\boldsymbol{C}}}^e{\overline{\boldsymbol{\varepsilon}}}^{e^{tr}}-\varDelta \gamma {\overline{\boldsymbol{C}}}^e\left(\boldsymbol{P}\overline{\boldsymbol{\sigma}}+\boldsymbol{q}\right) $$
(A6)

The unknown variables are selected as \( \overline{\boldsymbol{\sigma}} \), α and Δγ, and the corresponding system of equations are

$$ \begin{array}{l}{\boldsymbol{F}}_1=\overline{\boldsymbol{\sigma}}-{\overline{\boldsymbol{C}}}^e{\overline{\boldsymbol{\varepsilon}}}^{e^{tr}}+\varDelta \gamma {\overline{\boldsymbol{C}}}^e\left(\boldsymbol{P}\overline{\boldsymbol{\sigma}}+\boldsymbol{q}\right)=0\\ {}{F}_2=\alpha -{\alpha}_m-\sqrt{\frac{2}{3}}\varDelta \gamma {z}^{1/2}=0\\ {}{F}_3=\frac{1}{2}{\overline{\boldsymbol{\sigma}}}^T\boldsymbol{P}\overline{\boldsymbol{\sigma}}+{\boldsymbol{q}}^T\overline{\boldsymbol{\sigma}}-{\zeta}^2\left(\alpha \right)=0\end{array} $$
(A7)

Furthermore, \( \overline{\boldsymbol{\sigma}} \) and α can be seen as functions of Δγ, which means the above system of equations can be reduced to one equation which can be used to solve for Δγ. The Newton Raphson method is used for solving F 3 = 0 with the Jacobian calculated through

$$ \begin{array}{l}\frac{d{F}_3}{d\varDelta \gamma } = {\overline{\boldsymbol{\sigma}}}^T\boldsymbol{P}\frac{d\overline{\boldsymbol{\sigma}}}{d\varDelta \gamma }+{\boldsymbol{q}}^T\frac{d\overline{\boldsymbol{\sigma}}}{d\varDelta \gamma }-2\zeta \frac{d\zeta }{d\alpha}\frac{d\alpha }{d\varDelta \gamma}\\ {}\mathrm{with}\ \frac{d\overline{\boldsymbol{\sigma}}}{d\varDelta \gamma }=-{\left[\boldsymbol{I}+\varDelta \gamma {\overline{\boldsymbol{C}}}^e\boldsymbol{P}\right]}^{-1}{\overline{\boldsymbol{C}}}^e\left(\boldsymbol{P}\overline{\boldsymbol{\sigma}}+\boldsymbol{q}\right)\\ {}\mathrm{and}\kern0.5em \frac{d\alpha }{d\varDelta \gamma }=\sqrt{\frac{2}{3}}{z}^{\frac{1}{2}}+\sqrt{\frac{1}{6}}{z}^{-\frac{1}{2}}\varDelta \gamma \frac{dz}{d\overline{\boldsymbol{\sigma}}}\ \frac{d\overline{\boldsymbol{\sigma}}}{d\varDelta \gamma }=0\end{array} $$
(A8)

which are obtained by taking the differential of the equations F 1 = 0 and F 2 = 0. After calculating Δγ, \( \overline{\boldsymbol{\sigma}} \) is updated by

$$ \overline{\boldsymbol{\sigma}}={\left(\boldsymbol{I}+\varDelta \gamma {\overline{\boldsymbol{C}}}^e\boldsymbol{P}\right)}^{-1}\left({\overline{\boldsymbol{\sigma}}}^{tr}-\varDelta \gamma {\overline{\boldsymbol{C}}}^e\boldsymbol{q}\right) $$
(A9)

and α is updated using (A5) and \( {\overline{\boldsymbol{\varepsilon}}}^p \) is updated using (A4). Next, to compute the consistent algorithmic tangent modulus \( {\overline{\boldsymbol{C}}}_T \), i.e. \( \frac{d\overline{\boldsymbol{\sigma}}}{d\overline{\boldsymbol{\varepsilon}}}=\frac{d\overline{\boldsymbol{\sigma}}}{d{\overline{\boldsymbol{\varepsilon}}}^{e^{tr}}} \), the total differential of the system of (A7) is carried out considering variation of total strain \( \overline{\boldsymbol{\varepsilon}} \), i.e.

$$ \begin{array}{l}d{\boldsymbol{F}}_1=\frac{\partial {\boldsymbol{F}}_1}{\partial \overline{\boldsymbol{\sigma}}}d\overline{\boldsymbol{\sigma}}+\frac{\partial {\boldsymbol{F}}_1}{\partial \alpha }d\alpha +\frac{\partial {\boldsymbol{F}}_1}{\partial \Delta \gamma }d\left(\Delta \gamma \right)+\frac{\partial {\boldsymbol{F}}_1}{\partial {\overline{\boldsymbol{\varepsilon}}}^{e^{tr}}}d{\overline{\boldsymbol{\varepsilon}}}^{e^{tr}}=0\\ {}d{F}_2=\frac{\partial {F}_2}{\partial \overline{\boldsymbol{\sigma}}}d\overline{\boldsymbol{\sigma}}+\frac{\partial {F}_2}{\partial \alpha }d\alpha +\frac{\partial {F}_2}{\partial \Delta \gamma }d\left(\Delta \gamma \right)+\frac{\partial {F}_2}{\partial {\overline{\boldsymbol{\varepsilon}}}^{e^{tr}}}d{\overline{\boldsymbol{\varepsilon}}}^{e^{tr}}=0\\ {}d{F}_3=\frac{\partial {F}_3}{\partial \overline{\boldsymbol{\sigma}}}d\overline{\boldsymbol{\sigma}}+\frac{\partial {F}_3}{\partial \alpha }d\alpha +\frac{\partial {F}_3}{\partial \Delta \gamma }d\left(\Delta \gamma \right)+\frac{\partial {F}_3}{\partial {\overline{\boldsymbol{\varepsilon}}}^{e^{tr}}}d{\overline{\boldsymbol{\varepsilon}}}^{e^{tr}}=0\end{array} $$
(A10)

Where

$$ \begin{array}{l}{\boldsymbol{A}}_{11}=\frac{\partial {\boldsymbol{F}}_1}{\partial \overline{\boldsymbol{\sigma}}}={\boldsymbol{I}}_6+\varDelta \gamma {\overline{\boldsymbol{C}}}^e\boldsymbol{P}, \kern0.75em {\boldsymbol{A}}_{12}=\frac{\partial {\boldsymbol{F}}_1}{\partial \alpha }=0, \kern0.75em {\boldsymbol{A}}_{13}=\frac{\partial {\boldsymbol{F}}_1}{\partial \Delta \gamma }={\overline{\boldsymbol{C}}}^e\left(\boldsymbol{P}\overline{\boldsymbol{\sigma}}+\boldsymbol{q}\right),\\ {}{\boldsymbol{A}}_{21}=\frac{\partial {F}_2}{\partial \overline{\boldsymbol{\sigma}}}=-\sqrt{\frac{2}{3}}\varDelta \gamma \frac{1}{2}\frac{1}{z^{1/2}}\ \frac{dz}{d\overline{\boldsymbol{\sigma}}}\kern0.5em ,\kern0.75em {A}_{22}=\frac{\partial {F}_2}{\partial \alpha }=1, \kern0.75em {A}_{23}=\frac{\partial {F}_2}{\partial \Delta \gamma }=-\sqrt{\frac{2}{3}}{z}^{1/2},\\ {}{\boldsymbol{A}}_{31}=\frac{\partial {F}_3}{\partial \overline{\boldsymbol{\sigma}}}={\overline{\boldsymbol{\sigma}}}^T\boldsymbol{P}+{\boldsymbol{q}}^T, \kern0.75em {A}_{32}=\frac{\partial {F}_3}{\partial \alpha }=-2\zeta \frac{d\zeta }{d\alpha }, \kern0.75em {A}_{33}=\frac{\partial {F}_3}{\partial \Delta \gamma }=0,\kern0.75em \\ {}\frac{\partial {\boldsymbol{F}}_1}{\partial {\overline{\boldsymbol{\varepsilon}}}^{e^{tr}}}=-{\overline{\boldsymbol{C}}}^e\kern0.5em ,\kern1em \frac{\partial {F}_2}{\partial {\overline{\boldsymbol{\varepsilon}}}^{e^{tr}}}=0, \kern0.75em \frac{\partial {F}_3}{\partial {\overline{\boldsymbol{\varepsilon}}}^{e^{tr}}}=0\end{array} $$
(A11)

where \( \frac{dz}{d\overline{\boldsymbol{\sigma}}}=2{\left(\boldsymbol{P}\overline{\boldsymbol{\sigma}}+\boldsymbol{q}\right)}^T\boldsymbol{Z}\boldsymbol{P} \) and \( \frac{d\zeta }{d\alpha }=\left(\frac{K^p}{\sigma_y}\right) \).

Equation (A10) can be written in matrix–vector form as

$$ \left[\begin{array}{ccc}\hfill {\boldsymbol{A}}_{11}\hfill & \hfill 0\hfill & \hfill {\boldsymbol{A}}_{13}\hfill \\ {}\hfill {\boldsymbol{A}}_{21}\hfill & \hfill 1\hfill & \hfill {A}_{23}\hfill \\ {}\hfill {\boldsymbol{A}}_{31}\hfill & \hfill {A}_{32}\hfill & \hfill 0\hfill \end{array}\right]\left[\begin{array}{c}\hfill d\overline{\boldsymbol{\sigma}}\hfill \\ {}\hfill d\alpha \hfill \\ {}\hfill d\left(\Delta \gamma \right)\hfill \end{array}\right]=\left[\begin{array}{c}\hfill {\overline{\boldsymbol{C}}}^ed{\overline{\boldsymbol{\varepsilon}}}^{e^{tr}}\hfill \\ {}\hfill 0\hfill \\ {}\hfill 0\hfill \end{array}\right] $$
(A12)

With simple manipulations, the tangent moduli can be obtained as

$$ {\overline{\boldsymbol{C}}}_T=\frac{d\overline{\boldsymbol{\sigma}}}{d{\overline{\boldsymbol{\varepsilon}}}^{e^{tr}}} = {\left({\boldsymbol{A}}_{11}-\frac{{\boldsymbol{A}}_{13}}{A_{23}}\left({\boldsymbol{A}}_{21}-\frac{1}{A_{32}}{\boldsymbol{A}}_{31}\right)\right)}^{-1}{\overline{\boldsymbol{C}}}^e $$
(A13)

Appendix B: Calculation of the terms \( \partial {\overline{\boldsymbol{C}}}^e/\partial {\rho}_e \), ∂P/∂ρ e , ∂q/∂ρ e , ∂z/∂ρ e and ∂ζ/∂ρ e

  1. a.

    \( \partial {\overline{\boldsymbol{C}}}^e/\partial {\rho}_e \)

$$ \frac{\partial {\overline{\boldsymbol{C}}}^e}{\partial {\rho}_e}=\left[\begin{array}{cccccc}\hfill \frac{\partial {C}_{11}}{\partial {\rho}_e}\hfill & \hfill \frac{\partial {C}_{12}}{\partial {\rho}_e}\hfill & \hfill \frac{\partial {C}_{13}}{\partial {\rho}_e}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill \frac{\partial {C}_{12}}{\partial {\rho}_e}\hfill & \hfill \frac{\partial {C}_{22}}{\partial {\rho}_e}\hfill & \hfill \frac{\partial {C}_{23}}{\partial {\rho}_e}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill \frac{\partial {C}_{13}}{\partial {\rho}_e}\hfill & \hfill \frac{\partial {C}_{23}}{\partial {\rho}_e}\hfill & \hfill \frac{\partial {C}_{33}}{\partial {\rho}_e}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill \frac{\partial {C}_{44}}{\partial {\rho}_e}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill \frac{\partial {C}_{55}}{\partial {\rho}_e}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill \frac{\partial {C}_{66}}{\partial {\rho}_e}\hfill \end{array}\right] $$
(B1)
$$ \begin{array}{l}\frac{\partial {C}_{11}}{\partial {\rho}_e}=\frac{1-{\nu}_{23}{\nu}_{32}}{\overline{\nu}}\frac{\partial {E}_1}{\partial {\rho}_e};\kern0.5em {C}_{22}=\frac{1-{\nu}_{31}{\nu}_{13}}{\overline{\nu}}\frac{\partial {E}_2}{\partial {\rho}_e};\kern0.75em {C}_{33}=\frac{1-{\nu}_{12}{\nu}_{21}}{\overline{\nu}}\frac{\partial {E}_3}{\partial {\rho}_e}\\ {}{C}_{12}=\frac{\nu_{12}+{\nu}_{32}{\nu}_{13}}{\overline{\nu}}\frac{\partial {E}_2}{\partial {\rho}_e};\kern0.5em {C}_{13}=\frac{\nu_{13}+{\nu}_{12}{\nu}_{23}}{\overline{\nu}}\frac{\partial {E}_3}{\partial {\rho}_e};\kern0.75em {C}_{23}=\frac{\nu_{23}+{\nu}_{21}{\nu}_{13}}{\overline{\nu}}\frac{\partial {E}_3}{\partial {\rho}_e}\\ {}{C}_{44}=\frac{\partial {G}_{12}}{\partial {\rho}_e};\ {C}_{55}=\frac{\partial {G}_{23}}{\partial {\rho}_e};\ {C}_{66}=\frac{\partial {G}_{31}}{\partial {\rho}_e}\\ {}\overline{\nu}=1-{\nu}_{12}{\nu}_{21}-{\nu}_{23}{\nu}_{32}-{\nu}_{31}{\nu}_{13}-2{\nu}_{21}{\nu}_{32}{\nu}_{13}\\ {}\frac{\partial {E}_i}{\partial {\rho}_e}=p\left({E}_{i,0}-{E}_{i, min}\right){\rho}_e^{p-1}, \kern0.5em i=1,2,3\\ {}\frac{\partial {G}_{ij}}{\partial {\rho}_e}=p\left({G}_{ij,0}-{G}_{ij, min}\right){\rho}_e^{p-1}, \kern1em \left(i,j\right)=\left(1,2\right),\ \left(2,3\right),\ \left(3,1\right)\end{array} $$
(B2)
  1. b.

    P/∂ρ e , ∂q/∂ρ e and ∂z/∂ρ e

By defining \( {a}_i=\frac{1}{{\overline{\sigma}}_{ii}^t{\overline{\sigma}}_{ii}^c} \), (i = 1, 2, 3), and using chain rule

$$ \frac{d{a}_i}{d{\rho}_e}=-\frac{1}{{\left({\overline{\sigma}}_{ii}^t{\overline{\sigma}}_{ii}^c\right)}^2}\left(\frac{d{\overline{\sigma}}_{ii}^t}{d{\rho}_e}{\overline{\sigma}}_{ii}^c+\frac{d{\overline{\sigma}}_{ii}^c}{d{\rho}_e}{\overline{\sigma}}_{ii}^t\right) $$
(B3)

So the derivatives of P and q with respect to density ρ e are calculated as

$$ \begin{array}{l}\frac{\partial \boldsymbol{P}}{\partial {\rho}_e}=2\left[\begin{array}{cccccc}\hfill \frac{\partial \left({c}_1+{c}_3\right)}{\partial {\rho}_e}\hfill & \hfill -\frac{\partial {c}_1}{\partial {\rho}_e}\hfill & \hfill -\frac{\partial {c}_3}{\partial {\rho}_e}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill -\frac{\partial {c}_1}{\partial {\rho}_e}\hfill & \hfill \frac{\partial \left({c}_2+{c}_1\right)}{\partial {\rho}_e}\hfill & \hfill -\frac{\partial {c}_2}{\partial {\rho}_e}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill -\frac{\partial {c}_3}{\partial {\rho}_e}\hfill & \hfill -\frac{\partial {c}_2}{\partial {\rho}_e}\hfill & \hfill \frac{\partial \left({c}_3+{c}_2\right)}{\partial {\rho}_e}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill \frac{\partial {c}_4}{\partial {\rho}_e}\hfill & \hfill 0\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill \frac{\partial {c}_5}{\partial {\rho}_e}\hfill & \hfill 0\hfill \\ {}\hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill \frac{\partial {c}_6}{\partial {\rho}_e}\hfill \end{array}\right]\\ {}\frac{\partial \boldsymbol{q}}{\partial {\rho}_e}={\left[\begin{array}{cccccc}\hfill \frac{\partial {c}_7}{\partial {\rho}_e}\hfill & \hfill \frac{\partial {c}_8}{\partial {\rho}_e}\hfill & \hfill \frac{\partial {c}_9}{\partial {\rho}_e}\hfill & \hfill 0\hfill & \hfill 0\hfill & \hfill 0\hfill \end{array}\right]}^T\\ {}\frac{\partial z}{\partial {\rho}_e}=2{\left(\boldsymbol{P}\overline{\boldsymbol{\sigma}}+\boldsymbol{q}\right)}^T\boldsymbol{Z}\left(\frac{\partial \boldsymbol{P}}{\partial {\rho}_e}\overline{\boldsymbol{\sigma}}+\frac{\partial \boldsymbol{q}}{\partial {\rho}_e}\right)\end{array} $$
(B4)

With

$$ \begin{array}{l}\frac{d{c}_1}{d{\rho}_e}=0.5\left(\frac{d{a}_1}{d{\rho}_e}+\frac{d{a}_2}{d{\rho}_e}-\frac{d{a}_3}{d{\rho}_e}\right)\\ {}\frac{d{c}_2}{d{\rho}_e}=0.5\left(-\frac{d{a}_1}{d{\rho}_e}+\frac{d{a}_2}{d{\rho}_e}+\frac{d{a}_3}{d{\rho}_e}\right)\\ {}\frac{d{c}_3}{d{\rho}_e}=0.5\left(\frac{d{a}_1}{d{\rho}_e}-\frac{d{a}_2}{d{\rho}_e}+\frac{d{a}_3}{d{\rho}_e}\right)\\ {}\frac{d{c}_4}{d{\rho}_e}=-2\frac{1}{{\left({\overline{\sigma}}_{12}^0\right)}^3}\frac{d{\overline{\sigma}}_{12}^0}{d{\rho}_e}\\ {}\frac{d{c}_5}{d{\rho}_e}=-2\frac{1}{{\left({\overline{\sigma}}_{23}^0\right)}^3}\frac{d{\overline{\sigma}}_{23}^0}{d{\rho}_e}\\ {}\frac{d{c}_6}{d{\rho}_e}=-2\frac{1}{{\left({\overline{\sigma}}_{13}^0\right)}^3}\frac{d{\overline{\sigma}}_{13}^0}{d{\rho}_e}\\ {}\frac{d{c}_7}{d{\rho}_e}={a}_1\left(\frac{d{\overline{\sigma}}_{11}^c}{d{\rho}_e}-\frac{d{\overline{\sigma}}_{11}^t}{d{\rho}_e}\right)+\frac{d{a}_1}{d{\rho}_e}\left({\overline{\sigma}}_{11}^c-{\overline{\sigma}}_{11}^t\right)\\ {}\frac{d{c}_8}{d{\rho}_e}={a}_2\left(\frac{d{\overline{\sigma}}_{22}^c}{d{\rho}_e}-\frac{d{\overline{\sigma}}_{22}^t}{d{\rho}_e}\right)+\frac{d{a}_2}{d{\rho}_e}\left({\overline{\sigma}}_{22}^c-{\overline{\sigma}}_{22}^t\right)\\ {}\frac{d{c}_9}{d{\rho}_e}={a}_3\left(\frac{d{\overline{\sigma}}_{33}^c}{d{\rho}_e}-\frac{d{\overline{\sigma}}_{33}^t}{d{\rho}_e}\right)+\frac{d{a}_3}{d{\rho}_e}\left({\overline{\sigma}}_{33}^c-{\overline{\sigma}}_{33}^t\right)\end{array} $$
(B5)

where the expressions of \( \frac{d{\overline{\sigma}}_{ii}^c}{d{\rho}_e} \), \( \frac{d{\overline{\sigma}}_{ii}^t}{d{\rho}_e} \) (i = 1, 2, 3) and \( \frac{d{\overline{\sigma}}_{ij}^0}{d{\rho}_e} \) ((i, j) = (1, 2), (2, 3), (1, 3)) can be calculated from (20).

  1. c.

    ζ/∂ρ e

$$ \frac{\partial \zeta }{\partial {\rho}_e}=\frac{1}{\sigma_y}\left(\frac{d{K}^p}{d{\rho}_e}-\frac{K^p}{\sigma_y}\frac{d{\sigma}_y}{d{\rho}_e}\right)\alpha $$
(B6)

where \( \frac{d{K}^p}{d{\rho}_e} \) and \( \frac{d{\sigma}_y}{d{\rho}_e} \) can be obtained from (20).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, G., Li, L. & Khandelwal, K. Topology optimization of structures with anisotropic plastic materials using enhanced assumed strain elements. Struct Multidisc Optim 55, 1965–1988 (2017). https://doi.org/10.1007/s00158-016-1612-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1612-1

Keywords

Navigation