Skip to main content
Log in

Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This work investigates a simplified approach to cope with the optimization of preliminary design of structures under local fatigue constraints along with a global enforcement on the overall compliance. The problem aims at the minimization of the weight of linear elastic structures under given loads and boundary conditions. The expected stiffness of the optimal structure is provided by the global constraint, whereas a set of local stress–based constraints ask for a structure to be fatigue resistant. A modified Goodman fatigue strength comparison is implemented through the same formalism to address pressure–dependent failure in materials as in Drucker–Prager strength criterion. As a simplification, the Sines approach is used to define the equivalent mean and alternating stresses to address the fatigue resistance for an infinite life time. Sines computation is based on the equivalent mean and alternate stress depending on the invariants of the stress tensor and its deviatoric part, respectively. The so–called singularity phenomenon is overcome by the implementation of a suitable qp-relaxation of the equivalent stress measures. Numerical examples are presented to illustrate the features of the achieved optimal layouts and of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Notes

  1. 1 \(\mathbf {M}^{0}_{e}= \mathbf {T_{e}^{0,T}}\mathbf {V}\mathbf {{T_{e}^{0}}}\) with \(\mathbf {V}= \left (\begin {array}{ccc} 1 & -1/2 & 0 \\ -1/2 & 1 & 0\\ 0& 0 & 3 \end {array}\right )\).

  2. 2 \(\mathbf {H}^{0}_{e}=\left (\begin {array}{l}1\\1\\0 \end {array}\right )\mathbf {{T_{e}^{0}}}\).

References

  • Bendsœ M, Kikuchi N (1988) Generating optimal topologies in structural design using a homogeneization method. Comp Meth Appl Mech Eng 71:197–224

    Article  MATH  Google Scholar 

  • Bendsœ M, Sigmund O (2003) Topology optimization - Theory, methods and applications. Springer, EUA, New York

    MATH  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50:2143–2158

    Article  MathSciNet  MATH  Google Scholar 

  • Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidiscip Optim 36:125–141

    Article  MathSciNet  MATH  Google Scholar 

  • Bruggi M, Dusyinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidisc Optim 46(3):369–384

    Article  MathSciNet  MATH  Google Scholar 

  • Bruggi M, Dusyinx P (2013) A stress–based approach to the optimal design of structures with unilateral behavior of material or supports. Struct Multidisc Optim 46(3):369–384

    Article  MathSciNet  Google Scholar 

  • Budynas RG, Nisbett JK (2011) Shigley’s mechanical engineering design, 9th edn. McGraw-Hill, New York

    Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non–linear elastic structures and compliant mechanisms. Comp Meth Appl Mech Eng 190:3443–3459

    Article  MATH  Google Scholar 

  • Cheng GD, Guo X (1997) ε–relaxed approach in topology optimization. Struct Optim 13:258–266

    Article  Google Scholar 

  • Duysinx P, Bendsœ MP (1998) Topology optimization of continuum structures with local stress constraints. Int J Numer Methods Eng 43:1453–1478

    Article  MathSciNet  MATH  Google Scholar 

  • Duysinx P, Sigmund O (1998) New developments in handling stress constraints in optimal material distribution. 7th Symposium on Multidisciplinary Analysis and Optimization AIAA–98–4906: 1501–1509

  • Duysinx P, Van Miegroet L, Lemaire E, Brüls O, Bruyneel M (2008) Topology and generalized shape optimization: why stress constraints are so important? Int J Simul Multidiscip Des Optim 2:253–258

    Article  Google Scholar 

  • Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54:331–389

    Article  Google Scholar 

  • Grunwald J, Schnack E (1997) A fatigue model for shape optimization. Struct Optim 14:36–44

    Article  Google Scholar 

  • Guilherme CEM, Fonseca JSO (2007) Topology optimization of continuum structures with epsilon-relaxed stress constraints. In: Alves M, Da Costa Mattos HS (eds) Solid mechanics in Brazil, vol 1. ABCM, Rio de Janeiro, pp 239–250

  • Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struc Multidisc Optim 48:33–47

    Article  MathSciNet  MATH  Google Scholar 

  • Holmberg E, Torstenfelt B, Klarbring A (2014) Fatigue constrained topology optimization. Struc Multidisc Optim 50:207–219

    Article  MathSciNet  MATH  Google Scholar 

  • Kaya N, Karen I, Öztürk F (2010) Re-design of a failed clutch fork using topology and shape optimization by the response surface method. Mater Des 31:3008–3014

    Article  Google Scholar 

  • Kim Y, Park G (2010) Nonlinear dynamic response structural optimization using equivalent static loads. Comput Methods Appl Mech Eng 199:660–676

    Article  MATH  Google Scholar 

  • Kirsch U (1990) On singular topologies in optimal structural design. Struct Optim 2:133–142

    Article  Google Scholar 

  • Lalanne C (1999) Mechanical vibration & shock. Volume IV, Fatigue damage. Hermes Penton Science 1999.19

  • Le C, Norato J, Bruns TE, Ha C, Tortorelli DA (2010) Stress–based Topology Optimization for Continua. Struct Multidiscip Optim 41:605–620

    Article  Google Scholar 

  • Luo Y, Yu Wang Yu M, Kang Z (2013) An enhanced aggregation method for topology optimization with local stress constraints. Comput Method Appl Mech Engrg 254:31–41

    Article  MathSciNet  MATH  Google Scholar 

  • Mrzygold M, Zielinski A (2006) Numerical implementation of multiaxial high-cycle fatigue criterion to structural optimization. J Theor Appl Mech 44(3):691–712

    Google Scholar 

  • Norton R (2000) Machine design: An integrated approach. Prentice Hall, N.J

    Google Scholar 

  • París J, Navarrina F, Colominas I, Casteleiro M (2009) Topology optimization of continuum structures with local and global stress constraints. Struct Multidisc Optim 39(4):419–437

    Article  MathSciNet  MATH  Google Scholar 

  • Park GJ, Kang BS (2003) Validation of a structural optimisation algorithm transforming dynamic loads into equivalent static loads. J Optim Theory Appl 118(1):191–200

    Article  MathSciNet  MATH  Google Scholar 

  • Pereira JT, Fancello EA, Barcellos CS (2004) Topology optimization of continuum structures with material failure constraints. Struct Multidisc Optim 26(1–2):50–66

    Article  MathSciNet  MATH  Google Scholar 

  • Rozvany GIN (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37:217– 237

    Article  MathSciNet  MATH  Google Scholar 

  • Seung H, Dong-Hoon C, Yoon G (2015) Fatigue and static failure considerations using topology optimization method. Appl Math Model 39:1137–1162

    Article  Google Scholar 

  • Sherif K, Irschik H (2010) Efficient topology optimization of large dynamic finite element systems using fatigue. AIAA J 48(7):1339–1347

    Article  Google Scholar 

  • Schütz W (1996) A history of fatigue. Eng Fract Mech 54(2):263–300

    Article  Google Scholar 

  • Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16:68–75

    Article  Google Scholar 

  • Svanberg K (1987) Method of moving asymptotes - a new method for structural optimization. Int J Numer Methods Eng 24:359–373

    Article  MathSciNet  MATH  Google Scholar 

  • Svanberg K, Werme M (2007) Sequential integer programming methods for stress constrained topology optimization. Struct Multidisc Optim 34(4):277–299

    Article  MathSciNet  MATH  Google Scholar 

  • Svärd H (2015a) Topology optimization of Fatigue-Constrained structures. Doctoral Thesis KTH Engineering Sciences, Stockholm, Sweden

  • Svärd H (2015b) Interior value extrapolation: a new method for stress, evaluation during topology optimization. Struct Multidisc Optim 51:613–629

  • Sved G, Ginos Z (1968) Structural optimization under multiple loading. Int J Mech Sci 10:803–805

    Article  Google Scholar 

  • Yang RJ, Chen CJ (1996) Stress-based topology optimization. Struct Multidisc Optim 12(2):98–105

    Article  Google Scholar 

  • Weibull W (1939) Statistical theory of the strength of materials. Ingeniörsvetenskapsakademiens handlingar Generalstabens litografiska anstalts förlag

Download references

Acknowledgments

Part of the work has been done when the first author was spending a research period at Politecnico di Milano. This author would like to acknowledge the Belgian National Fund for Scientific research (FRIA) for its financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Collet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Collet, M., Bruggi, M. & Duysinx, P. Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance. Struct Multidisc Optim 55, 839–855 (2017). https://doi.org/10.1007/s00158-016-1510-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-016-1510-6

Keywords

Navigation