Skip to main content
Log in

Second-order cone programming formulations for a class of problems in structural optimization

  • RESEARCH PAPER
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

This paper provides efficient and easy to implement formulations for two problems in structural optimization as second-order cone programming (SOCP) problems based on the minimum compliance method and derived using the principle of complementary energy. In truss optimization both single and multiple loads (where we optimize the worst-case compliance) are considered. By using a heuristic which is based on the SOCP duality we can consider a simple ground structure and add only the members which improve the compliance of the structure. It is also shown that thickness optimization is a problem similar to truss optimization. Examples are given to illustrate the method developed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Achtziger W (1996) Truss topology optimization including bar properties different for tension and compression. Struct Multidiscipl Optim 12:63–74

    Google Scholar 

  • Achtziger W (2007) On simultaneous optimization of truss geometry and topology. Struct Multidiscipl Optim 33:285–304

    Article  MathSciNet  Google Scholar 

  • Andersen E, Roos C, Terlaky T (2003) On implementing a primal-dual interior-point method for conic quadratic optimization. Math Program Series B 95:249–277

    Article  MATH  MathSciNet  Google Scholar 

  • Beckers M (1999) Topology optimization using a dual method with discrete variables. Struct Optim 17:14–24

    Article  MathSciNet  Google Scholar 

  • Ben-Tal A, Bendsøe M (1993) A new method for optimal truss design topology design. SIAM J Optim 3:322–358

    Article  MATH  MathSciNet  Google Scholar 

  • Ben-Tal A, Nemirovski A (1997) Robust truss topology design via semidefinite programming. SIAM J Optim 7:991–1016

    Article  MATH  MathSciNet  Google Scholar 

  • Ben-Tal A, Nemirovski A (2001) Lectures on modern convex optimization. MPS-SIAM series on optimization. SIAM, Philadelphia

    MATH  Google Scholar 

  • Bendsøe M (1995) Optimization of structural topology, shape and material. Springer, Berlin

    Google Scholar 

  • Bendsøe M, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71:197–224

    Article  Google Scholar 

  • Bendsøe M, Ben-Tal A, Zowe J (1994) Optimization methods for truss geometry and topology design. Struct Optim 7:141–159

    Article  Google Scholar 

  • Chen YM, Bhaskar A, Keane A (2002) A parallel nodal-based evolutionary structural optimization algorithm. Struct Multidiscipl Optim 23:241–251

    Article  Google Scholar 

  • CIMNE (2007) GiD Version 8.0. Reference manual

  • Dorn W, Gomory R, Greenberg H (1964) Automatic design of optimal structures. J Mech 3:25–52

    Google Scholar 

  • Gilbert M, Tyas A (2003) Layout optimization of large-scale pin jointed frames. Eng Comput 20:1044–1064

    Article  MATH  Google Scholar 

  • Hagishita T, Ohsaki M (2009) Topology optimization of trusses by growing ground structure method. Struct Multidiscipl Optim 37:377–393

    Article  Google Scholar 

  • Jarre F, Koc̆vara M, Zowe J (1998) Optimal truss design by interior point methods. SIAM J Optim 8:1084–1117

    Article  MATH  MathSciNet  Google Scholar 

  • Kirsch U (1989) Optimal topologies of truss structures. Comput Methods Appl Mech Eng 72:15–28

    Article  MATH  MathSciNet  Google Scholar 

  • Koc̆vara M, Outrata J (2006) Effective reformulations of the truss topology design problem. Optim Eng 7:201–219

    Article  MathSciNet  Google Scholar 

  • Koc̆vara M, Stingl M (2003) Pennon a code for convex nonlinear and semidefinite programming. Optim Methods Softw 18:317–333

    Article  MathSciNet  Google Scholar 

  • Lam Y, Manickarajah D, Bertolini A (2000) Effective reformulations of the truss topology design problem. Finite Elem Anal Des 34:159–174

    Article  MATH  Google Scholar 

  • Lobo M, Vandenberghe L, Boyd S, Lebret H (1998) Applications of second-order cone programming. Linear Algebra Appl 284:193–228

    Article  MATH  MathSciNet  Google Scholar 

  • Makrodimopoulos A, Bhaskar A, Keane A (2008) A formulation for large-scale truss optimization. In: CD-ROM proceedings of the 6th GRACM international congress on computational mechanics, Thessaloniki, 19–21 June 2008

  • Martinez P, Marti P, Querin O (2007) Growth method for size, topology, and geometry optimization of truss structures. Struct Multidiscipl Optim 33:13–26

    Article  Google Scholar 

  • Michell A (1904) The limits of economy of material in frame-structures. Philos Mag 8:589–597

    Google Scholar 

  • MOSEK ApS (2007) The MOSEK optimization tools manual. Version 5.0, Revision 60

  • Qing L, GP GS, Xie Y (2001) Evolutionary thickness design with stiffness maximization and stress minimization criteria. Int J Numer Methods Eng 52:979–995

    Article  MATH  Google Scholar 

  • Rozvany G (2001) Stress ratio and compliance based methods in topology optimization—a critical review. Struct Multidiscipl Optim 21:109–119

    Article  Google Scholar 

  • Rozvany G, Zhou M (1991) The COC algorithm, Part I: cross-section optimization or sizing. Comput Methods Appl Mech Eng 89:281–308

    Article  Google Scholar 

  • Sturm J (1999) Using sedumi 1.02, a matlab toolbox for optimization over symmetric cones. Optim Methods Softw 11–12:625–653

    Article  MathSciNet  Google Scholar 

  • Tütüncü R, Toh K, Todd M (2003) Solving semidefinite-quadratic-linear programs using SDPT3. Math Program 95:189–217

    Article  MATH  MathSciNet  Google Scholar 

  • Xie Y, Steven G (1997) Evolutionary structural optimization. Springer, Berlin

    MATH  Google Scholar 

  • Zhou M, Rozvany G (1991) The COC algorithm, Part II: topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89:309–336

    Article  Google Scholar 

  • Zhou M, Rozvany G (1996) An improved approximation technique for the dcoc method of sizing optimization. Comput Struct 60:763–769

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Athanasios Makrodimopoulos.

Additional information

EPSRC grant EP/E004547/1).

Early stages of the developments of this paper are provided in the recent conference paper of Makrodimopoulos et al. (2008).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makrodimopoulos, A., Bhaskar, A. & Keane, A.J. Second-order cone programming formulations for a class of problems in structural optimization. Struct Multidisc Optim 40, 365–380 (2010). https://doi.org/10.1007/s00158-009-0376-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-009-0376-2

Keywords

Navigation