Skip to main content
Log in

A variant of Mathias forcing that preserves \({\mathsf{ACA}_0}\)

  • Published:
Archive for Mathematical Logic Aims and scope Submit manuscript

Abstract

We present and analyze \({F_\sigma}\)-Mathias forcing, which is similar but tamer than Mathias forcing. In particular, we show that this forcing preserves certain weak subsystems of second-order arithmetic such as \({\mathsf{ACA}_0}\) and \({\mathsf{WKL}_0 + \mathsf{I}\Sigma^0_2}\), whereas Mathias forcing does not. We also show that the needed reals for \({F_\sigma}\)-Mathias forcing (in the sense of Blass in Ann Pure Appl Logic 109(1–2):77–88, 2001) are just the computable reals, as opposed to the hyperarithmetic reals for Mathias forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baumgartner, J.E.: Iterated forcing. In: Surveys in Set Theory, London Mathematical Society Lecture Note Series, vol. 87. Cambridge University Press, Cambridge, pp. 1–59 (1983)

  2. Blass A.R.: Needed reals and recursion in generic reals. Ann. Pure Appl. Logic (Dedicated to Petr Vopěnka) 109(1–2), 77–88 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cholak P.A., Jockusch C.G. Jr., Slaman T.A.: On the strength of Ramsey’s theorem for pairs. J. Symb. Logic. 66(1), 1–55 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Daguenet, M.: Propriété de Baire de β N muni d’une nouvelle topologie et application àla construction d’ultrafiltres. Séminaire Choquet, 14e année (1974/75), Initiation à l’analyse, exp. no. 14. Secrétariat Mathématique, Paris, p. 3 (1975)

  5. Dzhafarov D.D., Jockusch C.G. Jr.: Ramsey’s theorem and cone avoidance. J. Symb. Logic. 74(2), 557–578 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ellentuck E.: A new proof that analytic sets are Ramsey. J. Symb. Logic 39, 163–165 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hirschfeldt D.R., Shore R.A.: Combinatorial principles weaker than Ramsey’s theorem for pairs. J. Symb. Logic 72(1), 171–206 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kohlenbach, U.: Higher order reverse mathematics. In: Reverse Mathematics 2001, Lecture Notes Logic, vol. 21. Association for Symbolic Logic, La Jolla, CA, pp. 281–295 (2005)

  9. Mazur K.: \({F_\sigma}\)-ideals and \({\omega_1\omega_1^*}\)-gaps in the Boolean algebras P(ω)/I. Fund. Math. 138(2), 103–111 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Seetapun D., Slaman T.A.: On the strength of Ramsey’s theorem. Notre Dame J. Formal Logic (Special issue: Models of arithmetic) 36(4), 570–582 (1995)

    MathSciNet  MATH  Google Scholar 

  11. Simpson S.G.: Subsystems of Second Order Arithmetic, 2nd edn. Perspectives in Logic. Cambridge University Press, Cambridge (2009)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François G. Dorais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dorais, F.G. A variant of Mathias forcing that preserves \({\mathsf{ACA}_0}\) . Arch. Math. Logic 51, 751–780 (2012). https://doi.org/10.1007/s00153-012-0297-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00153-012-0297-4

Keywords

Mathematics Subject Classification (2000)

Navigation