Goodman KE, Cosgrove SE, Pineles L et al (2021) Significant regional differences in antibiotic use across 576 US hospitals and 11 701 326 adult admissions, 2016–2017. Clin Infect Dis 73:213–222. https://doi.org/10.1093/cid/ciaa570
CAS
Article
PubMed
Google Scholar
Kimball JM, Deri CR, Nesbitt WJ, Nelson GE, Staub MB (2021) Development of the three antimicrobial stewardship E’s (TASE) framework and association between stewardship interventions and intended results analysis to identify key facility-specific interventions and strategies for successful antimicrobial stewardship. Clin Infect Dis 73:1397–1403. https://doi.org/10.1093/cid/ciab430
CAS
Article
PubMed
Google Scholar
Watkins RR, Deresinski S (2017) Increasing evidence of the nephrotoxicity of piperacillin/tazobactam and vancomycin combination therapy—what is the clinician to do? Clin Infect Dis 65:2137–2143. https://doi.org/10.1093/cid/cix675
CAS
Article
PubMed
Google Scholar
Bellos I, Karageorgiou V, Pergialiotis V, Perrea DN (2020) Acute kidney injury following the concurrent administration of antipseudomonal β-lactams and vancomycin: a network meta-analysis. Clin Microbiol Infect 26:696–705. https://doi.org/10.1016/j.cmi.2020.03.019
CAS
Article
PubMed
Google Scholar
Filippone EJ, Kraft WK, Farber JL (2017) The nephrotoxicity of vancomycin. Clin Pharmacol Ther 102:459–469. https://doi.org/10.1002/cpt.726
CAS
Article
PubMed
PubMed Central
Google Scholar
Luque Y, Louis K, Jouanneau C et al (2017) Vancomycin-associated cast nephropathy. J Am Soc Nephrol 28:1723–1728. https://doi.org/10.1681/ASN.2016080867
Article
PubMed
PubMed Central
Google Scholar
Pill MW, O’Neill CV, Chapman MM, Singh AK (1997) Suspected acute interstitial nephritis induced by piperacillin–tazobactam. Pharmacotherapy 17:166–169
CAS
PubMed
Google Scholar
Pais GM, Liu J, Avedissian SN et al (2020) Lack of synergistic nephrotoxicity between vancomycin and piperacillin/tazobactam in a rat model and a confirmatory cellular model. J Antimicrob Chemother 75:1228–1236. https://doi.org/10.1093/jac/dkz563
CAS
Article
PubMed
PubMed Central
Google Scholar
He M, Souza E, Matvekas A, Crass RL, Pai MP (2021) Alteration in acute kidney injury potential with the combination of vancomycin and imipenem-cilastatin/relebactam or piperacillin/tazobactam in a preclinical model. Antimicrob Agents Chemother 65:e02141-e2220. https://doi.org/10.1128/AAC.02141-20
CAS
Article
PubMed
PubMed Central
Google Scholar
Chang J, Pais G, Valdez K, Marianski S, Barreto EF, Scheetz MH. Glomerular function and urinary biomarker changes between vancomycin and vancomycin plus piperacillin–tazobactam in a translational rat model. Antimicrob Agents Chemother. 2022:aac0213221. https://doi.org/10.1128/aac.02132-21 (Epub ahead of print)
Avedissian SN, Pais GM, Liu J, Rhodes NJ, Scheetz MH (2020) piperacillin–tazobactam added to vancomycin increases risk for acute kidney injury: fact or fiction? Clin Infect Dis 71:426–432. https://doi.org/10.1093/cid/ciz1189
CAS
Article
PubMed
Google Scholar
Bauer JH, Brooks CS, Burch RN (1982) Clinical appraisal of creatinine clearance as a measurement of glomerular filtration rate. Am J Kidney Dis 2:337–346. https://doi.org/10.1016/s0272-6386(82)80091-7
CAS
Article
PubMed
Google Scholar
Landersdorfer CB, Kirkpatrick CM, Kinzig M, Bulitta JB, Holzgrabe U, Sörgel F (2008) Inhibition of flucloxacillin tubular renal secretion by piperacillin. Br J Clin Pharmacol 66:648–659. https://doi.org/10.1111/j.1365-2125.2008.03266.x
CAS
Article
PubMed
PubMed Central
Google Scholar
Wen S, Wang C, Duan Y et al (2018) OAT1 and OAT3 also mediate the drug-drug interaction between piperacillin and tazobactam. Int J Pharm 537:172–182. https://doi.org/10.1016/j.ijpharm.2017.12.037
CAS
Article
PubMed
Google Scholar
Sokol PP (1991) Mechanism of vancomycin transport in the kidney: studies in rabbit renal brush border and basolateral membrane vesicles. J Pharmacol Exp Ther 259:1283–1287
CAS
PubMed
Google Scholar
Wen S, Wang C, Huo X et al (2018) JBP485 attenuates vancomycin-induced nephrotoxicity by regulating the expressions of organic anion transporter (Oat) 1, Oat3, organic cation transporter 2 (Oct2), multidrug resistance-associated protein 2 (Mrp2) and P-glycoprotein (P-gp) in rats. Toxicol Lett 295:195–204. https://doi.org/10.1016/j.toxlet.2018.06.1220
CAS
Article
PubMed
Google Scholar
Vallon V, Eraly SA, Rao SR et al (2012) A role for the organic anion transporter OAT3 in renal creatinine secretion in mice. Am J Physiol Renal Physiol 302:F1293–F1299. https://doi.org/10.1152/ajprenal.00013.2012
CAS
Article
PubMed
PubMed Central
Google Scholar
Dong J, Liu Y, Li L, Ding Y, Qian J, Jiao Z. Interactions between meropenem and renal drug transporters. Curr Drug Metab. 2022. https://doi.org/10.2174/1389200223666220428081109 (Epub ahead of print)
Velez JCQ, Obadan NO, Kaushal A, Alzubaidi M, Bhasin B, Sachdev SH, Karakala N, Arthur JM, Nesbit RM, Phadke GM (2018) Vancomycin-associated acute kidney injury with a steep rise in serum creatinine. Nephron 139(2):131–142. https://doi.org/10.1159/000487149
CAS
Article
PubMed
Google Scholar
Coca SG, Singanamala S, Parikh CR (2012) Chronic kidney disease after acute kidney injury: a systematic review and meta- analysis. Kidney Int 81:442–448. https://doi.org/10.1038/ki.2011.379
Article
PubMed
Google Scholar
Odutayo A, Wong CX, Farkouh M et al (2017) AKI and long-term risk for cardiovascular events and mortality. J Am Soc Nephrol 28:377–387. https://doi.org/10.1681/ASN.2016010105
Article
PubMed
Google Scholar
Fugate JE, Kalimullah EA, Hocker SE, Clark SL, Wijdicks EF, Rabinstein AA (2013) Cefepime neurotoxicity in the intensive care unit: a cause of severe, underappreciated encephalopathy. Crit Care 17:R264. https://doi.org/10.1186/cc13094
Article
PubMed
PubMed Central
Google Scholar
Lee JD, Heintz BH, Mosher HJ, Livorsi DJ, Egge JA, Lund BC (2021) Risk of acute kidney injury and clostridioides difficile infection with piperacillin/tazobactam, cefepime, and meropenem with or without vancomycin. Clin Infect Dis 73:e1579–e1586. https://doi.org/10.1093/cid/ciaa1902
CAS
Article
PubMed
Google Scholar
Sandiumenge A, Diaz E, Rodriguez A et al (2006) Impact of diversity of antibiotic use on the development of antimicrobial resistance. J Antimicrob Chemother 57:1197–1204. https://doi.org/10.1093/jac/dkl097
CAS
Article
PubMed
Google Scholar
Bagshaw SM, Bellomo R (2010) Cystatin C in acute kidney injury. Curr Opin Crit Care 16(6):533–539
Article
Google Scholar
Inker LA, Schmid CH, Tighiouart H et al (2012) Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med 367:20–29. https://doi.org/10.1056/NEJMoa1114248
CAS
Article
PubMed
PubMed Central
Google Scholar
Miano TA, Meyer NJ, Hennessy S et al (2021) Combined vancomycin and piperacillin–tazobactam treatment is not associated with acute kidney injury (AKI) when assessed using plasma cystatin C. Am J Respir Crit Care Med 203:A1017
Google Scholar
Reilly JP, Wang F, Jones TK et al (2018) Plasma angiopoietin-2 as a potential causal marker in sepsis-associated ARDS development: evidence from Mendelian randomization and mediation analysis. Intensive Care Med 44:1849–1858. https://doi.org/10.1007/s00134-018-5328-0
CAS
Article
PubMed
PubMed Central
Google Scholar
Levy MM, Fink MP, Marshall JC et al (2003) 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med 31(4):1250–1256. https://doi.org/10.1097/01.CCM.0000050454.01978.3B
Article
PubMed
Google Scholar
Blair M, Côté JM, Cotter A, Lynch B, Redahan L, Murray PT (2021) Nephrotoxicity from vancomycin combined with piperacillin–tazobactam: a comprehensive review. Am J Nephrol 52(2):85–97. https://doi.org/10.1159/000513742
CAS
Article
PubMed
Google Scholar
Navalkele B, Pogue JM, Karino S, Nishan B, Salim M, Solanki S, Pervaiz A, Tashtoush N, Shaikh H, Koppula S, Koons J, Hussain T, Perry W, Evans R, Martin ET, Mynatt RP, Murray KP, Rybak MJ, Kaye KS (2017) Risk of acute kidney injury in patients on concomitant vancomycin and piperacillin–tazobactam compared to those on vancomycin and cefepime. Clin Infect Dis 64(2):116–123. https://doi.org/10.1093/cid/ciw709
CAS
Article
PubMed
Google Scholar
Siew ED, Ikizler TA, Matheny ME et al (2012) Estimating baseline kidney function in hospitalized patients with impaired kidney function. Clin J Am Soc Nephrol 7:712–719. https://doi.org/10.2215/CJN.10821011
Article
PubMed
PubMed Central
Google Scholar
Herget-Rosenthal S, Marggraf G, Hüsing J, Göring F, Pietruck F, Janssen O, Philipp T, Kribben A (2004) Early detection of acute renal failure by serum cystatin C. Kidney Int 66(3):1115–1122. https://doi.org/10.1111/j.1523-1755.2004.00861.x
CAS
Article
PubMed
Google Scholar
Nejat M, Pickering JW, Walker RJ, Endre ZH (2010) Rapid detection of acute kidney injury by plasma cystatin C in the intensive care unit. Nephrol Dial Transpl 25:3283–3289. https://doi.org/10.1093/ndt/gfq176
CAS
Article
Google Scholar
Dabitao D, Margolick JB, Lopez J, Bream JH (2011) Multiplex measurement of proinflammatory cytokines in human serum: comparison of the Meso Scale Discovery electrochemiluminescence assay and the Cytometric Bead Array. J Immunol Methods 372:71–77. https://doi.org/10.1016/j.jim.2011.06.033
CAS
Article
PubMed
PubMed Central
Google Scholar
Griffin BR, Faubel S, Edelstein CL (2019) Biomarkers of drug-induced kidney toxicity. Ther Drug Monit 41:213–226. https://doi.org/10.1097/FTD.0000000000000589
CAS
Article
PubMed
PubMed Central
Google Scholar
Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group. KDIGO clinical practice practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138. https://doi.org/10.1038/kisup.2012.2
Neyra JA, Leaf DE (2018) Risk prediction models for acute kidney injury in critically ill patients: opus in progressu. Nephron 140:99–104. https://doi.org/10.1159/000490119
Article
PubMed
Google Scholar
Cartin-Ceba R, Kashiouris M, Plataki M, Kor DJ, Gajic O, Casey ET (2012) Risk factors for development of acute kidney injury in critically ill patients: a systematic review and meta-analysis of observational studies. Crit Care Res Pract 2012:691013. https://doi.org/10.1155/2012/691013
Article
PubMed
PubMed Central
Google Scholar
Stevens LA, Schmid CH, Greene T et al (2009) Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int 75:652–660. https://doi.org/10.1038/ki.2008.638
CAS
Article
PubMed
Google Scholar
Austin PC (2009) Using the standardized difference to compare the prevalence of a binary variable between two groups in observational research. Commun Stat Simul Comput 38:1228–1234. https://doi.org/10.1080/03610910902859574
Article
Google Scholar
Granger E, Sergeant JC, Lunt M (2019) Avoiding pitfalls when combining multiple imputation and propensity scores. Stat Med 38:5120–5132. https://doi.org/10.1002/sim.8355
Article
PubMed
PubMed Central
Google Scholar
Tennant PWG, Arnold KF, Ellison GTH, Gilthorpe MS (2021) Analyses of “change scores” do not estimate causal effects in observational data. Int J Epidemiol. https://doi.org/10.1093/ije/dyab050
Article
PubMed
Google Scholar
Stürmer T, Webster-Clark M, Lund JL et al (2021) Propensity score weighting and trimming strategies for reducing variance and bias of treatment effect estimates: a simulation study. Am J Epidemiol 190:1659–1670. https://doi.org/10.1093/aje/kwab041
Article
PubMed
PubMed Central
Google Scholar
Schreier DJ, Kashani KB, Sakhuja A et al (2019) Incidence of acute kidney injury among critically ill patients with brief empiric use of antipseudomonal β-lactams with vancomycin. Clin Infect Dis 68:1456–1462. https://doi.org/10.1093/cid/ciy724
CAS
Article
PubMed
Google Scholar
Buckley MS, Komerdelj IA, D'Alessio PA, et al. Vancomycin with concomitant piperacillin/tazobactam vs. cefepime or meropenem associated acute kidney injury in the critically ill: a multicenter propensity score-matched study. J Crit Care. 2022;67:134–140. https://doi.org/10.1016/j.jcrc.2021.10.018.
Blevins AM, Lashinsky JN, McCammon C, Kollef M, Micek S, Juang P (2019) Incidence of acute kidney injury in critically ill patients receiving vancomycin with concomitant piperacillin–tazobactam, cefepime, or meropenem. Antimicrob Agents Chemother 63:e02658-e2718. https://doi.org/10.1128/AAC.02658-18
CAS
Article
PubMed
PubMed Central
Google Scholar
Côté JM, Desjardins M, Cailhier JF, Murray PT, Beaubien SW (2022) Risk of acute kidney injury associated with anti-pseudomonal and anti-MRSA antibiotic strategies in critically ill patients. PLoS ONE 17(3):e0264281. https://doi.org/10.1371/journal.pone.0264281
CAS
Article
PubMed
PubMed Central
Google Scholar
Kane-Gill SL, Ostermann M, Shi J, Joyce EL, Kellum JA (2019) Evaluating renal stress using pharmacokinetic urinary biomarker data in critically ill patients receiving vancomycin and/or piperacillin–tazobactam: a secondary analysis of the multicenter sapphire study. Drug Saf 42:1149–1155. https://doi.org/10.1007/s40264-019-00846-x
CAS
Article
PubMed
Google Scholar
Lipsitch M, Tchetgen Tchetgen E, Cohen T (2010) Negative controls: a tool for detecting confounding and bias in observational studies. Epidemiology 21:383–388. https://doi.org/10.1097/EDE.0b013e3181d61eeb
Article
PubMed
PubMed Central
Google Scholar