Skip to main content

Advertisement

Log in

Plasma angiopoietin-2 as a potential causal marker in sepsis-associated ARDS development: evidence from Mendelian randomization and mediation analysis

  • Original
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Purpose

A causal biomarker for acute respiratory distress syndrome (ARDS) could fuel precision therapy options. Plasma angiopoietin-2 (ANG2), a vascular permeability marker, is a strong candidate on the basis of experimental and observational evidence. We used genetic causal inference methods—Mendelian randomization and mediation—to infer potential effects of plasma ANG2.

Methods

We genotyped 703 septic subjects, measured ICU admission plasma ANG2, and performed a quantitative trait loci (QTL) analysis to determine variants in the ANGPT2 gene associated with plasma ANG2 (p < 0.005). We then used linear regression and post-estimation analysis to genetically predict plasma ANG2 and tested genetically predicted ANG2 for ARDS association using logistic regression. We estimated the proportion of the genetic effect explained by plasma ANG2 using mediation analysis.

Results

Plasma ANG2 was strongly associated with ARDS (OR 1.59 (95% CI 1.35, 1.88) per log). Five ANGPT2 variants were associated with ANG2 in European ancestry subjects (n = 404). Rs2442608C, the most extreme cis QTL (coefficient 0.22, 95% CI 0.09–0.36, p = 0.001), was associated with higher ARDS risk: adjusted OR 1.38 (95% CI 1.01, 1.87), p = 0.042. No significant QTL were identified in African ancestry subjects. Genetically predicted plasma ANG2 was associated with ARDS risk: adjusted OR 2.25 (95% CI 1.06–4.78), p = 0.035. Plasma ANG2 mediated 34% of the rs2442608C-related ARDS risk.

Conclusions

In septic European ancestry subjects, the strongest ANG2-determining ANGPT2 genetic variant is associated with higher ARDS risk. Plasma ANG2 may be a causal factor in ARDS development. Strategies to reduce plasma ANG2 warrant testing to prevent or treat sepsis-associated ARDS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS (2012) Acute respiratory distress syndrome: the Berlin definition. JAMA 307:2526–2533

    PubMed  Google Scholar 

  2. Matthay MA, Ware LB, Zimmerman GA (2012) The acute respiratory distress syndrome. J Clin Investig 122:2731–2740

    Article  CAS  Google Scholar 

  3. Calfee CS, Delucchi K, Parsons PE, Thompson BT, Ware LB, Matthay MA (2014) Subphenotypes in acute respiratory distress syndrome: latent class analysis of data from two randomised controlled trials. Lancet Respir Med 2:611–620

    Article  Google Scholar 

  4. Calfee CS, Janz DR, Bernard GR, May AK, Kangelaris KN, Matthay MA, Ware LB (2015) Distinct molecular phenotypes of direct versus indirect ARDS in single-center and multicenter studies. Chest 147:1539–1548

    Article  Google Scholar 

  5. Cohen JC, Boerwinkle E, Mosley TH, Hobbs HH (2006) Sequence variations in PCSK9, low LDL, and protection against coronary heart disease. N Engl J Med 354:1264–1272

    Article  CAS  Google Scholar 

  6. Li X, Hastie AT, Hawkins GA, Moore WC, Ampleford EJ, Milosevic J, Li H, Busse WW, Erzurum SC, Kaminski N, Wenzel SE, Meyers DA, Bleecker ER (2015) eQTL of bronchial epithelial cells and bronchial alveolar lavage deciphers GWAS-identified asthma genes. Allergy 70:1309–1318

    Article  CAS  Google Scholar 

  7. Linsel-Nitschke P, Götz A, Erdmann J, Braenne I, Braund P, Hengstenberg C, Stark K, Fischer M, Schreiber S, El Mokhtari NE, Schaefer A, Schrezenmeier J, Rubin D, Hinney A, Reinehr T, Roth C, Ortlepp J, Hanrath P, Hall AS, Mangino M, Lieb W, Lamina C, Heid IM, Doering A, Gieger C, Peters A, Meitinger T, Wichmann HE, König IR, Ziegler A, Kronenberg F, Samani NJ, Schunkert H, for the Wellcome Trust Case Control Consortium (WTCCC) and the Cardiogenics Consortium (2008) Lifelong reduction of LDL-cholesterol related to a common variant in the LDL-receptor gene decreases the risk of coronary artery disease—a Mendelian randomisation study. PLoS One 3:e2986

    Article  Google Scholar 

  8. He W, Castiblanco J, Walter EA, Okulicz JF, Ahuja SK (2010) Mendelian randomization: potential use of genetics to enable causal inferences regarding HIV-associated biomarkers and outcomes. Curr Opin HIV AIDS 5:545–559

    Article  Google Scholar 

  9. Bochud M, Rousson V (2010) Usefulness of Mendelian randomization in observational epidemiology. Int J Environ Res Publ Health 7:711–728

    Article  CAS  Google Scholar 

  10. Lawlor DA, Harbord RM, Sterne JA, Timpson N, Davey Smith G (2008) Mendelian randomization: using genes as instruments for making causal inferences in epidemiology. Stat Med 27:1133–1163

    Article  Google Scholar 

  11. Didelez V, Sheehan N (2007) Mendelian randomization as an instrumental variable approach to causal inference. Stat Methods Med Res 16:309–330

    Article  Google Scholar 

  12. Emdin CA, Khera AV, Natarajan P et al (2017) Genetic association of waist-to-hip ratio with cardiometabolic traits, type 2 diabetes, and coronary heart disease. JAMA 317:626–634

    Article  Google Scholar 

  13. Davey Smith G, Paternoster L, Relton C (2017) When will mendelian randomization become relevant for clinical practice and public health? JAMA 317:589–591

    Article  Google Scholar 

  14. Agrawal A, Matthay MA, Kangelaris KN, Stein J, Chu JC, Imp BM, Cortez A, Abbott J, Liu KD, Calfee CS (2013) Plasma angiopoietin-2 predicts the onset of acute lung injury in critically ill patients. Am J Respir Crit Care Med 187:736–742

    Article  Google Scholar 

  15. Calfee CS, Gallagher D, Abbott J, Thompson BT, Matthay MA (2012) Plasma angiopoietin-2 in clinical acute lung injury: prognostic and pathogenetic significance. Crit Care Med 40:1731–1737

    Article  CAS  Google Scholar 

  16. Gallagher DC, Parikh SM, Balonov K, Miller A, Gautam S, Talmor D, Sukhatme VP (2008) Circulating angiopoietin 2 correlates with mortality in a surgical population with acute lung injury/adult respiratory distress syndrome. Shock 29:656–661

    CAS  PubMed  PubMed Central  Google Scholar 

  17. van der Heijden M, van Nieuw Amerongen GP, Koolwijk P, van Hinsbergh VW, Groeneveld AB (2008) Angiopoietin-2, permeability oedema, occurrence and severity of ALI/ARDS in septic and non-septic critically ill patients. Thorax 63:903–909

    Article  Google Scholar 

  18. Bhandari V, Choo-Wing R, Harijith A, Sun H, Syed MA, Homer RJ, Elias JA (2012) Increased hyperoxia-induced lung injury in nitric oxide synthase 2 null mice is mediated via angiopoietin 2. Am J Respir Cell Mol Biol 46:668–676

    Article  CAS  Google Scholar 

  19. Bhandari V, Choo-Wing R, Lee CG, Zhu Z, Nedrelow JH, Chupp GL, Zhang X, Matthay MA, Ware LB, Homer RJ, Lee PJ, Geick A, de Fougerolles AR, Elias JA (2006) Hyperoxia causes angiopoietin 2-mediated acute lung injury and necrotic cell death. Nat Med 12:1286–1293

    Article  CAS  Google Scholar 

  20. Parikh SM, Mammoto T, Schultz A, Yuan HT, Christiani D, Karumanchi SA, Sukhatme VP (2006) Excess circulating angiopoietin-2 may contribute to pulmonary vascular leak in sepsis in humans. PLoS Med 3:e46

    Article  Google Scholar 

  21. Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN, Yancopoulos GD (1997) Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277:55–60

    Article  CAS  Google Scholar 

  22. Meyer NJ, Li M, Feng R, Bradfield J, Gallop R, Bellamy S, Fuchs BD, Lanken PN, Albelda SM, Rushefski M, Aplenc R, Abramova H, Atochina-Vasserman EN, Beers MF, Calfee CS, Cohen MJ, Pittet JF, Christiani DC, O’Keefe GE, Ware LB, May AK, Wurfel MM, Hakonarson H, Christie JD (2011) ANGPT2 genetic variant is associated with trauma-associated acute lung injury and altered plasma angiopoietin-2 isoform ratio. Am J Respir Crit Care Med 183:1344–1353

    Article  CAS  Google Scholar 

  23. Su L, Zhai R, Sheu CC, Gallagher DC, Gong MN, Tejera P, Thompson BT, Christiani DC (2009) Genetic variants in the angiopoietin-2 gene are associated with increased risk of ARDS. Intensive Care Med 35:1024–1030

    Article  CAS  Google Scholar 

  24. Bellani G, Laffey JG, Pham T et al (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315:788–800

    Article  CAS  Google Scholar 

  25. Sheu CC, Gong MN, Zhai R, Chen F, Bajwa EK, Clardy PF, Gallagher DC, Thompson BT, Christiani DC (2010) Clinical characteristics and outcomes of sepsis-related vs non-sepsis-related ARDS. Chest 138:559–567

    Article  CAS  Google Scholar 

  26. Reilly JP, Anderson BJ, Mangalmurti NS, Nguyen TD, Holena DN, Wu Q, Nguyen ET, Reilly MP, Lanken PN, Christie JD, Meyer NJ, Shashaty MGS (2015) The ABO histo-blood group and AKI in critically Ill patients with trauma or sepsis. Clin J Am Soc Nephrol 10:1911–1920

    Article  CAS  Google Scholar 

  27. Reilly JP, Meyer NJ, Shashaty MGS, Feng R, Lanken PN, Gallop R, Kaplan S, Herlim M, Oz NL, Hiciano I, Campbell A, Holena DN, Reilly MP, Christie JD (2014) ABO blood type A is associated with increased risk of ARDS in whites following both major trauma and severe sepsis. Chest 145:753–761

    Article  Google Scholar 

  28. Bone RC, Balk RA, Cerra FB, Dellinger RP, Fein AM, Knaus WA, Schein RM, Sibbald WJ (1992) American College of Chest Physicians/Society of Critical Care Medicine consensus conference: definitions for sepsis and organ failure and guidelines for the use of innovative therapies in sepsis. Crit Care Med 20:864–874

    Article  Google Scholar 

  29. Singer M, Deutschman CS, Seymour C et al (2016) The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 315:801–810

    Article  CAS  Google Scholar 

  30. Gajic O, Dabbagh O, Park PK, Adesanya A, Chang SY, Hou P, Anderson H, Hoth JJ, Mikkelsen ME, Gentile NT, Gong MN, Talmor D, Bajwa E, Watkins TR, Festic E, Yilmaz M, Iscimen R, Kaufman DA, Esper AM, Sadikot R, Douglas I, Sevransky J, Malinchoc M, USCIITG:LIPS (2011) Early identification of patients at risk of acute lung injury: evaluation of lung injury prediction score in a multicenter cohort study. Am J Respir Crit Care Med 183:462–470

    Article  Google Scholar 

  31. Shah CV, Lanken PN, Localio AR, Gallop R, Bellamy S, Ma SF, Flores C, Kahn JM, Finkel B, Fuchs BD, Garcia JG, Christie JD (2010) An alternative method of acute lung injury classification for use in observational studies. Chest 138:1054–1061

    Article  Google Scholar 

  32. Meyer NJ, Feng R, Li M, Zhao Y, Sheu CC, Tejera P, Gallop R, Bellamy S, Rushefski M, Lanken PN, Aplenc R, O’Keefe GE, Wurfel MM, Christiani DC, Christie JD (2013) IL1RN coding variant is associated with lower risk of acute respiratory distress syndrome and increased plasma IL-1 receptor antagonist. Am J Respir Crit Care Med 187:950–959

    Article  CAS  Google Scholar 

  33. Wei Y, Wang Z, Su L, Chen F, Tejera P, Bajwa EK, Wurfel MM, Lin X, Christiani DC (2015) Platelet count mediates the contribution of a genetic variant in LRRC 16A to ARDS risk. Chest 147:607–617

    Article  Google Scholar 

  34. Wiedemann HP, Wheeler AP, Bernard GR, Thompson BT, Hayden D, deBoisblanc B, Connors AF Jr, Hite RD, Harabin AL (2006) Comparison of two fluid-management strategies in acute lung injury. N Engl J Med 354:2564–2575

    Article  CAS  Google Scholar 

  35. National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Clinical Trials Network, Matthay MA, Brower RG, Carson S, Douglas IS, Eisner M, Hite D, Holets S, Kallet RH, Liu KD, MacIntyre N, Moss M, Schoenfeld D, Steingrub J, Thompson BT (2011) Randomized, placebo-controlled clinical trial of an aerosolized beta(2)-agonist for treatment of acute lung injury. Am J Respir Crit Care Med 184:561–568

    Article  Google Scholar 

  36. Rice TW, Wheeler AP, Thompson BT, Steingrub J, Hite RD, Moss M, Morris A, Dong N, Rock P (2012) Initial trophic vs full enteral feeding in patients with acute lung injury: the EDEN randomized trial. JAMA 307:795–803

    Article  Google Scholar 

  37. Li Y, van Setten J, Verma S, Lu Y, Holmes M, Gao H, Lek M, Nair N, Chandrupatla H, Chang B, Karczewski K, Wong C, Mohebnasab M, Mukhtar E, Phillips R, Tragante V, Hou C, Steel L, Lee T, Garifallou J, Guettouche T, Cao H, Guan W, Himes A, van Houten J, Pasquier A, Yu R, Carrigan E, Miller M, Schladt D (2015) Concept and design of a genome-wide association genotyping array tailored for transplantation-specific studies. Genome Med 7:90

    Article  Google Scholar 

  38. Meyer NJ, Daye ZJ, Rushefski M, Aplenc R, Lanken PN, Shashaty MG, Christie JD, Feng R (2012) SNP-set analysis replicates acute lung injury genetic risk factors. BMC Med Genet 13:52

    Article  CAS  Google Scholar 

  39. Imai K, Keele L, Tingley D (2010) A general approach to causal mediation analysis. Psychol Methods 15:309–334

    Article  Google Scholar 

  40. Wei Y, Tejera P, Wang Z, Zhang R, Chen F, Su L, Lin X, Bajwa EK, Thompson BT, Christiani DC (2017) A missense genetic variant in LRRC16A/CARMIL1 improves acute respiratory distress syndrome survival by attenuating platelet count decline. Am J Respir Crit Care Med 195:1353–1361

    Article  CAS  Google Scholar 

  41. Pierce BL, Ahsan H, Vanderweele TJ (2011) Power and instrument strength requirements for mendelian randomization studies using multiple genetic variants. Int J Epidemiol 40:740–752

    Article  Google Scholar 

  42. Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CJ, de Bakker PI (2008) SNAP: a web-based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics 24:2938–2939

    Article  CAS  Google Scholar 

  43. Pruim RJ, Welch RP, Sanna S, Teslovich TM, Chines PS, Gliedt TP, Boehnke M, Abecasis GR, Willer CJ (2010) LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics 26:2336–2337

    Article  CAS  Google Scholar 

  44. Hwang J-A, Lee EH, Lee SD, Park JB, Jeon BH, Cho C-H (2009) COMP-Ang1 ameliorates leukocyte adhesion and reinforces endothelial tight junctions during endotoxemia. Biochem Biophys Res Commun 381:592–596

    Article  CAS  Google Scholar 

  45. Kim SR, Lee KS, Park SJ, Min KH, Lee KY, Choe YH, Hong SH, Koh GY, Lee YC (2008) Angiopoietin-1 variant, COMP-Ang1 attenuates hydrogen peroxide-induced acute lung injury. Exp Mol Med 40:320–331

    Article  CAS  Google Scholar 

  46. Kumpers P, Gueler F, David S, Van Slyke P, Dumont DJ, Park JK, Bockmeyer CL, Parikh SM, Pavenstadt H, Haller H, Shushakova N (2011) The synthetic Tie2 agonist peptide vasculotide protects against vascular leakage and reduces mortality in murine abdominal sepsis. Crit Care 15:R261

    Article  Google Scholar 

  47. David S, Ghosh CC, Kumpers P, Shushakova N, Van Slyke P, Khankin EV, Karumanchi SA, Dumont D, Parikh SM (2011) Effects of a synthetic PEG-ylated Tie-2 agonist peptide on endotoxemic lung injury and mortality. Am J Physiol Lung Cell Mol Physiol 300:L851–L862

    Article  CAS  Google Scholar 

  48. Stiehl T, Thamm K, Kaufmann J, Schaeper U, Kirsch T, Haller H, Santel A, Ghosh CC, Parikh SM, David S (2014) Lung-targeted RNA interference against angiopoietin-2 ameliorates multiple organ dysfunction and death in sepsis. Crit Care Med 42:e654–e662

    Article  CAS  Google Scholar 

  49. David S, Park JK, Meurs M, Zijlstra JG, Koenecke C, Schrimpf C, Shushakova N, Gueler F, Haller H, Kumpers P (2011) Acute administration of recombinant angiopoietin-1 ameliorates multiple-organ dysfunction syndrome and improves survival in murine sepsis. Cytokine 55:251–259

    Article  CAS  Google Scholar 

  50. Cho C-H, Kammerer RA, Lee HJ, Steinmetz MO, Ryu YS, Lee SH, Yasunaga K, Kim K-T, Kim I, Choi H-H, Kim W, Kim SH, Park SK, Lee GM, Koh GY (2004) COMP-Ang1: a designed angiopoietin-1 variant with nonleaky angiogenic activity. Proc Natl Acad Sci USA 101:5547–5552

    Article  CAS  Google Scholar 

  51. McCarter SD, Mei SH, Lai PF, Zhang QW, Parker CH, Suen RS, Hood RD, Zhao YD, Deng Y, Han RN, Dumont DJ, Stewart DJ (2007) Cell-based angiopoietin-1 gene therapy for acute lung injury. Am J Respir Crit Care Med 175:1014–1026

    Article  CAS  Google Scholar 

  52. Mei SHJ, McCarter SD, Deng Y, Parker CH, Liles WC, Stewart DJ (2007) Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med 4:e269

    Article  Google Scholar 

  53. Zeni F, Freeman B, Natanson C (1997) Anti-inflammatory therapies to treat sepsis and septic shock: a reassessment. Crit Care Med 25:1095–1100

    Article  CAS  Google Scholar 

  54. Matthay MA, McAuley DF, Ware LB (2017) Clinical trials in acute respiratory distress syndrome: challenges and opportunities. Lancet Respir Med 5:524–534

    Article  Google Scholar 

  55. Meyer NJ, Calfee CS (2017) Novel translational approaches to the search for precision therapies for acute respiratory distress syndrome. Lancet Respir Med 5:512–523

    Article  Google Scholar 

  56. Beitler JR, Goligher EC, Schmidt M, Spieth PM, Zanella A, Martin-Loeches I, Calfee CS, Cavalcanti AB (2016) Personalized medicine for ARDS: the 2035 research agenda. Intensive Care Med 42:756–767

    Article  Google Scholar 

  57. Gilad Y, Rifkin SA, Pritchard JK (2008) Revealing the architecture of gene regulation: the promise of eQTL studies. Trends Genet 24:408–415

    Article  CAS  Google Scholar 

  58. Mackay TFC, Stone EA, Ayroles JF (2009) The genetics of quantitative traits: challenges and prospects. Nat Rev Genet 10:565–577

    Article  CAS  Google Scholar 

  59. Ferguson JF, Meyer NJ, Qu L, Xue C, Liu Y, DerOhannessian SL, Rushefski M, Paschos GK, Tang S, Schadt EE, Li M, Christie JD, Reilly MP (2015) Integrative genomics identifies 7p11.2 as a novel locus for fever and clinical stress response in humans. Hum Mol Genet 24:1801–1812

    Article  CAS  Google Scholar 

  60. Lieb W, Chen M-H, Larson MG, Safa R, Teumer A, Baumeister SE, Lin H, Smith HM, Koch M, Lorbeer R, Völker U, Nauck M, Völzke H, Wallaschofski H, Sawyer DB, Vasan RS (2015) Genome-wide association study for endothelial growth factors. Circulation 8:389–397

    CAS  PubMed  Google Scholar 

  61. Burgess S, Thompson SG (2011) Avoiding bias from weak instruments in mendelian randomization studies. Int J Epidemiol 40:755–764

    Article  Google Scholar 

  62. den Boer S, de Keizer NF, de Jonge E (2005) Performance of prognostic models in critically ill cancer patients—a review. Crit Care 9:R458–R463

    Article  Google Scholar 

  63. Ware LB, Fremont RD, Bastarache JA, Calfee CS, Matthay MA (2010) Determining the aetiology of pulmonary oedema by the oedema fluid-to-plasma protein ratio. Eur Respir J 35:331–337

    Article  CAS  Google Scholar 

  64. Famous KR, Delucchi K, Ware LB, Kangelaris KN, Liu KD, Thompson BT, Calfee CS (2017) Acute respiratory distress syndrome subphenotypes respond differently to randomized fluid management strategy. Am J Respir Crit Care Med 195:331–338

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Genotype-Tissue Expression (GTEx) Project was supported by the Common Fund of the Office of the Director of the National Institutes of Health, and by the following institutes: National Cancer Institute, National Human Genome Research Institute, National Heart Lung and Blood Institute, National Institue on Drug Abuse, National Institute of Mental Health, and National Institute of Neurological Diseases and Stroke. The data used for the analyses described in this manuscript were obtained from the GTEx Portal on 03/31/2018. Further, we acknowledge the patients and families of MESSI cohort who agreed to participate in this research study, and the nurses, physicians, and staff of the Founders 9 Medical Intensive Care Unit at the Hospital of the University of Pennsylvania.

Funding

This work was funded by NIH 137006 (NJM), NIH HL122424 (NJM), NIH HL125723 (JPR), NIH HL110969 and HL140026 (CSC), HL051856 (MAM), HL115354 (JDC), HL101779 (MMW), HL060710 and HL134356 (DCC), the American Thoracic Society Foundation (NJM), and the University of Pennsylvania Research Foundation (NJM). Drs. Christie, Meyer, Calfee, and Matthay also report funding from GlaxoSmithKline. In addition, Dr. Shashaty reports funding from NIH DK097307 and Dr. Cantu from NIH HL116656 and the R.W. Johnson Foundation.

Author information

Authors and Affiliations

Authors

Contributions

Dr. Meyer had access to all data and takes responsibility for the integrity of the work. JPR, JDC, RF, and NJM conceived of and designed the study. JPR, JDC, CSC, MAM, RF, DCC, MMW, and NJM obtained funding. JPR, FW, TKJ, JAP, BJA, MGS, TGD, EDJ, TRR, BL, JA, CAI, and NJM acquired data. JPR, FW, JAP, BJA, MGS, EC, XL, IB, CSC, MAM, JDC, RF, XL, IB, and NJM analyzed and interpreted the data. JPR and NJM drafted the manuscript. All authors made significant contributions to the final manuscript and approve its submission.

Corresponding author

Correspondence to Nuala J. Meyer.

Electronic supplementary material

Below is the link to the electronic supplementary material.

This article has an online data supplement, which is accessible from this issue’s table of contents.

Supplementary material 1 (DOCX 110 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reilly, J.P., Wang, F., Jones, T.K. et al. Plasma angiopoietin-2 as a potential causal marker in sepsis-associated ARDS development: evidence from Mendelian randomization and mediation analysis. Intensive Care Med 44, 1849–1858 (2018). https://doi.org/10.1007/s00134-018-5328-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-018-5328-0

Keywords

Navigation