Skip to main content

Advertisement

Log in

Extracorporeal carbon dioxide removal for acute respiratory failure: a review of potential indications, clinical practice and open research questions

  • Narrative Review
  • Published:
Intensive Care Medicine Aims and scope Submit manuscript

Abstract

Extracorporeal carbon dioxide removal (ECCO2R) is a form of extracorporeal life support (ECLS) largely aimed at removing carbon dioxide in patients with acute hypoxemic or acute hypercapnic respiratory failure, so as to minimize respiratory acidosis, allowing more lung protective ventilatory settings which should decrease ventilator-induced lung injury. ECCO2R is increasingly being used despite the lack of high-quality evidence, while complications associated with the technique remain an issue of concern. This review explains the physiological basis underlying the use of ECCO2R, reviews the evidence regarding indications and contraindications, patient management and complications, and addresses organizational and ethical considerations. The indications and the risk-to-benefit ratio of this technique should now be carefully evaluated using structured national or international registries and large randomized trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Conrad SA, Broman LM, Taccone FS et al (2018) The extracorporeal life support organization Maastricht treaty for nomenclature in extracorporeal life support. A position paper of the extracorporeal life support organization. Am J Respir Crit Care Med 198:447–451

    Article  PubMed  PubMed Central  Google Scholar 

  2. Brodie D, Slutsky AS, Combes A (2019) Extracorporeal life support for adults with respiratory failure and related indications: a review. JAMA 322:557–568

    Article  PubMed  Google Scholar 

  3. Combes A, Auzinger G, Capellier G et al (2020) ECCO(2)R therapy in the ICU: consensus of a European round table meeting. Crit Care 24:490

    Article  PubMed  PubMed Central  Google Scholar 

  4. Combes A, Fanelli V, Pham T et al (2019) Feasibility and safety of extracorporeal CO2 removal to enhance protective ventilation in acute respiratory distress syndrome: the SUPERNOVA study. Intensive Care Med 45:592–600

    Article  PubMed  Google Scholar 

  5. McNamee JJ, Gillies MA, Barrett NA et al (2021) Effect of lower tidal volume ventilation facilitated by extracorporeal carbon dioxide removal vs standard care ventilation on 90-day mortality in patients with acute hypoxemic respiratory failure: the REST randomized clinical trial. JAMA 326:1013–1023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Burki NK, Mani RK, Herth FJF et al (2013) A novel extracorporeal CO(2) removal system: results of a pilot study of hypercapnic respiratory failure in patients with COPD. Chest 143:678–686

    Article  CAS  PubMed  Google Scholar 

  7. Del Sorbo L, Pisani L, Filippini C et al (2015) Extracorporeal CO2 removal in hypercapnic patients at risk of noninvasive ventilation failure: a matched cohort study with historical control. Crit Care Med 43:120–127

    Article  PubMed  Google Scholar 

  8. Boyle AJ, Sklar MC, McNamee JJ et al (2018) Extracorporeal carbon dioxide removal for lowering the risk of mechanical ventilation: research questions and clinical potential for the future. Lancet Respir Med 6:874–884

    Article  PubMed  Google Scholar 

  9. Combes A, Schmidt M, Hodgson CL et al (2020) Extracorporeal life support for adults with acute respiratory distress syndrome. Intensive Care Med 46:2464–2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fanelli V, Ranieri MV, Mancebo J et al (2016) Feasibility and safety of low-flow extracorporeal carbon dioxide removal to facilitate ultra-protective ventilation in patients with moderate acute respiratory distress syndrome. Crit Care 20:36

    Article  PubMed  PubMed Central  Google Scholar 

  11. Combes A, Hajage D, Capellier G et al (2018) Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med 378:1965–1975

    Article  PubMed  Google Scholar 

  12. Gattinoni L, Agostoni A, Pesenti A et al (1980) Treatment of acute respiratory failure with low-frequency positive-pressure ventilation and extracorporeal removal of CO2. Lancet 2:292–294

    Article  CAS  PubMed  Google Scholar 

  13. Bein T, Weber-Carstens S, Goldmann A et al (2013) Lower tidal volume strategy ( approximately 3 ml/kg) combined with extracorporeal CO2 removal versus “conventional” protective ventilation (6 ml/kg) in severe ARDS: the prospective randomized Xtravent-study. Intensive Care Med 39:847–856

    Article  PubMed  PubMed Central  Google Scholar 

  14. Braune S, Sieweke A, Brettner F et al (2016) The feasibility and safety of extracorporeal carbon dioxide removal to avoid intubation in patients with COPD unresponsive to noninvasive ventilation for acute hypercapnic respiratory failure (ECLAIR study): multicentre case-control study. Intensive Care Med 42:1437–1444

    Article  CAS  PubMed  Google Scholar 

  15. Duscio E, Cipulli F, Vasques F et al (2019) Extracorporeal CO2 removal: the minimally invasive approach, theory, and practice. Crit Care Med 47:33–40

    Article  PubMed  Google Scholar 

  16. Schmidt M, Jaber S, Zogheib E et al (2018) Feasibility and safety of low-flow extracorporeal CO2 removal managed with a renal replacement platform to enhance lung-protective ventilation of patients with mild-to-moderate ARDS. Crit Care 22:122

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zanella A, Caironi P, Castagna L et al (2020) Extracorporeal chloride removal by electrodialysis. A novel approach to correct acidemia. Am J Respir Crit Care Med 201:799–813

    Article  CAS  PubMed  Google Scholar 

  18. Arazawa DT, Kimmel JD, Federspiel WJ (2015) Kinetics of CO2 exchange with carbonic anhydrase immobilized on fiber membranes in artificial lungs. J Mater Sci Mater Med 26:193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zanella A, Pesenti A, Busana M et al (2022) A minimally invasive and highly effective extracorporeal CO2 removal device combined with a continuous renal replacement therapy. Crit Care Med 50:e468–e476

    Article  CAS  PubMed  Google Scholar 

  20. Redant S, De Bels D, Barbance O et al (2021) Extracorporeal CO2 removal integrated within a continuous renal replacement circuit offers multiple advantages. Blood Purif 50:9–16

    Article  CAS  PubMed  Google Scholar 

  21. Slutsky AS, Ranieri VM (2013) Ventilator-induced lung injury. N Engl J Med 369:2126–2136

    Article  CAS  PubMed  Google Scholar 

  22. Amato MB, Meade MO, Slutsky AS et al (2015) Driving pressure and survival in the acute respiratory distress syndrome. N Engl J Med 372:747–755

    Article  CAS  PubMed  Google Scholar 

  23. Serpa Neto A, Deliberato RO, Johnson AEW et al (2018) Mechanical power of ventilation is associated with mortality in critically ill patients: an analysis of patients in two observational cohorts. Intensive Care Med 44:1914–1922

    Article  CAS  PubMed  Google Scholar 

  24. Morris AH, Wallace CJ, Menlove RL et al (1994) Randomized clinical trial of pressure-controlled inverse ratio ventilation and extracorporeal CO2 removal for adult respiratory distress syndrome. Am J Respir Crit Care Med 149:295–305

    Article  CAS  PubMed  Google Scholar 

  25. Goligher EC, Tomlinson G, Hajage D et al (2018) Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome and posterior probability of mortality benefit in a post hoc Bayesian analysis of a randomized clinical trial. JAMA 320:2251–2259

    Article  PubMed  Google Scholar 

  26. Barbaro RP, MacLaren G, Boonstra PS et al (2020) Extracorporeal membrane oxygenation support in COVID-19: an international cohort study of the Extracorporeal Life Support Organization registry. Lancet 396:1071–1078

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Schmidt M, Hajage D, Lebreton G et al (2020) Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome associated with COVID-19: a retrospective cohort study. Lancet Respir Med 8:1121–1131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Morelli A, Del Sorbo L, Pesenti A et al (2017) Extracorporeal carbon dioxide removal (ECCO2R) in patients with acute respiratory failure. Intensive Care Med 43:519–530

    Article  CAS  PubMed  Google Scholar 

  29. Hager DN, Krishnan JA, Hayden DL et al (2005) Tidal volume reduction in patients with acute lung injury when plateau pressures are not high. Am J Respir Crit Care Med 172:1241–1245

    Article  PubMed  PubMed Central  Google Scholar 

  30. Terragni PP, Del Sorbo L, Mascia L et al (2009) Tidal volume lower than 6 ml/kg enhances lung protection: role of extracorporeal carbon dioxide removal. Anesthesiology 111:826–835

    Article  PubMed  Google Scholar 

  31. Fitzgerald M, Millar J, Blackwood B et al (2014) Extracorporeal carbon dioxide removal for patients with acute respiratory failure secondary to the acute respiratory distress syndrome: a systematic review. Crit Care 18:222

    Article  PubMed  PubMed Central  Google Scholar 

  32. Goligher EC, Combes A, Brodie D et al (2019) Determinants of the effect of extracorporeal carbon dioxide removal in the SUPERNOVA trial: implications for trial design. Intensive Care Med 45:1219–1230

    Article  CAS  PubMed  Google Scholar 

  33. Jolliet P, Ouanes-Besbes L, Abroug F et al (2017) A multicenter randomized trial assessing the efficacy of helium/oxygen in severe exacerbations of chronic obstructive pulmonary disease. Am J Respir Crit Care Med 195:871–880

    Article  CAS  PubMed  Google Scholar 

  34. Kluge S, Braune SA, Engel M et al (2012) Avoiding invasive mechanical ventilation by extracorporeal carbon dioxide removal in patients failing noninvasive ventilation. Intensive Care Med 38:1632–1639

    Article  PubMed  Google Scholar 

  35. Abrams DC, Brenner K, Burkart KM et al (2013) Pilot study of extracorporeal carbon dioxide removal to facilitate extubation and ambulation in exacerbations of chronic obstructive pulmonary disease. Ann Am Thorac Soc 10:307–314

    Article  CAS  PubMed  Google Scholar 

  36. Bromberger BJ, Agerstrand C, Abrams D et al (2020) Extracorporeal carbon dioxide removal in the treatment of status asthmaticus. Crit Care Med 48:e1226–e1231

    Article  CAS  PubMed  Google Scholar 

  37. Schellongowski P, Riss K, Staudinger T et al (2015) Extracorporeal CO2 removal as bridge to lung transplantation in life-threatening hypercapnia. Transpl Int Off J Eur Soc Organ Transpl 28:297–304

    CAS  Google Scholar 

  38. Tipograf Y, Salna M, Minko E et al (2019) Outcomes of extracorporeal membrane oxygenation as a bridge to lung transplantation. Ann Thorac Surg 107:1456–1463

    Article  PubMed  Google Scholar 

  39. Bein T, Scherer MN, Philipp A et al (2005) Pumpless extracorporeal lung assist (pECLA) in patients with acute respiratory distress syndrome and severe brain injury. J Trauma 58:1294–1297

    Article  PubMed  Google Scholar 

  40. Loor G, Simpson L, Parulekar A (2017) Bridging to lung transplantation with extracorporeal circulatory support: when or when not? J Thorac Dis 9:3352–3361

    Article  PubMed  PubMed Central  Google Scholar 

  41. Kimmoun A, Oulehri W, Sonneville R et al (2018) Prevalence and outcome of heparin-induced thrombocytopenia diagnosed under veno-arterial extracorporeal membrane oxygenation: a retrospective nationwide study. Intensive Care Med 44:1460–1469

    Article  CAS  PubMed  Google Scholar 

  42. Glick D, Dzierba AL, Abrams D et al (2015) Clinically suspected heparin-induced thrombocytopenia during extracorporeal membrane oxygenation. J Crit Care 30:1190–1194

    Article  PubMed  Google Scholar 

  43. Fisser C, Winkler M, Malfertheiner MV et al (2021) Argatroban versus heparin in patients without heparin-induced thrombocytopenia during veno-venous extracorporeal membrane oxygenation: a propensity-score matched study. Crit Care 25:160

    Article  PubMed  PubMed Central  Google Scholar 

  44. Papazian L, Aubron C, Brochard L et al (2019) Formal guidelines: management of acute respiratory distress syndrome. Ann Intensive Care 9:69

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fan E, Del Sorbo L, Goligher EC et al (2017) An Official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine Clinical Practice Guideline: mechanical ventilation in adult patients with acute respiratory distress syndrome. Am J Respir Crit Care Med 195:1253–1263

    Article  PubMed  Google Scholar 

  46. Cummins C, Bentley A, McAuley DF et al (2018) A United Kingdom Register study of in-hospital outcomes of patients receiving extracorporeal carbon dioxide removal. J Intensive Care Soc 19:114–121

    Article  PubMed  Google Scholar 

  47. Augy JL, Aissaoui N, Richard C et al (2019) A 2-year multicenter, observational, prospective, cohort study on extracorporeal CO2 removal in a large metropolis area. J Intensive Care 7:45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Combes A, Tonetti T, Fanelli V et al (2019) Efficacy and safety of lower versus higher CO(2) extraction devices to allow ultraprotective ventilation: secondary analysis of the SUPERNOVA study. Thorax 74:1179–1181

    Article  PubMed  Google Scholar 

  49. Abrams D, Agerstrand C, Beitler JR et al (2022) Risks and benefits of ultra-lung-protective invasive mechanical ventilation strategies with a focus on extracorporeal support. Am J Respir Crit Care Med 205:873–882

    Article  PubMed  Google Scholar 

  50. Karagiannidis C, Hesselmann F, Fan E (2019) Physiological and technical considerations of extracorporeal CO(2) removal. Crit Care 23:75

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kalbhenn J, Neuffer N, Zieger B et al (2017) Is extracorporeal CO2 removal really “Safe” and “Less” invasive? Observation of blood injury and coagulation impairment during ECCO2R. Asaio j 63:666–671

    Article  PubMed  Google Scholar 

  52. Deshpande SJ, Vitali S, Thiagarajan R et al (2021) Coagulations studies do not correlate with each other or with hematologic complications during pediatric extracorporeal membrane oxygenation. Pediatr Crit Care Med 22:542–552

    Article  PubMed  PubMed Central  Google Scholar 

  53. McMichael ABV, Ryerson LM, Ratano D et al (2022) 2021 ELSO adult and pediatric anticoagulation guidelines. Asaio j 68:303–310

    Article  PubMed  Google Scholar 

  54. Tura-Ceide O, Pizarro S, García-Lucio J et al (2019) Progenitor cell mobilisation and recruitment in pulmonary arteries in chronic obstructive pulmonary disease. Respir Res 20:74

    Article  PubMed  PubMed Central  Google Scholar 

  55. Moussa MD, Santonocito C, Fagnoul D et al (2015) Evaluation of endothelial damage in sepsis-related ARDS using circulating endothelial cells. Intensive Care Med 41:231–238

    Article  CAS  PubMed  Google Scholar 

  56. Diehl JL, Peron N, Chocron R et al (2020) Respiratory mechanics and gas exchanges in the early course of COVID-19 ARDS: a hypothesis-generating study. Ann Intensive Care 10:95

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Diehl JL, Augy JL, Rivet N et al (2020) Severity of endothelial dysfunction is associated with the occurrence of hemorrhagic complications in COPD patients treated by extracorporeal CO(2) removal. Intensive Care Med 46:1950–1952

    Article  CAS  PubMed  Google Scholar 

  58. Diehl JL, Mercat A, Pesenti A (2019) Understanding hypoxemia on ECCO(2)R: back to the alveolar gas equation. Intensive Care Med 45:255–256

    Article  PubMed  Google Scholar 

  59. Graw JA, Hildebrandt P, Krannich A et al (2022) The role of cell-free hemoglobin and haptoglobin in acute kidney injury in critically ill adults with ARDS and therapy with VV ECMO. Crit Care 26:50

    Article  PubMed  PubMed Central  Google Scholar 

  60. Combes A, Brodie D, Bartlett R et al (2014) Position paper for the organization of extracorporeal membrane oxygenation programs for acute respiratory failure in adult patients. Am J Respir Crit Care Med 190:488–496

    Article  PubMed  Google Scholar 

  61. Combes A, Brodie D, Chen YS et al (2017) The ICM research agenda on extracorporeal life support. Intensive Care Med 43:1306–1318

    Article  PubMed  Google Scholar 

  62. Barbaro RP, Odetola FO, Kidwell KM et al (2015) Association of hospital-level volume of extracorporeal membrane oxygenation cases and mortality. Analysis of the extracorporeal life support organization registry. Am J Respir Crit Care Med 191:894–901

    Article  PubMed  PubMed Central  Google Scholar 

  63. Karagiannidis C, Brodie D, Strassmann S et al (2016) Extracorporeal membrane oxygenation: evolving epidemiology and mortality. Intensive Care Med 42:889–896

    Article  CAS  PubMed  Google Scholar 

  64. Staudinger T (2020) Update on extracorporeal carbon dioxide removal: a comprehensive review on principles, indications, efficiency, and complications. Perfusion 35:492–508

    Article  PubMed  Google Scholar 

  65. Ayanian JZ, Markel H (2016) Donabedian’s lasting framework for health care quality. N Engl J Med 375:205–207

    Article  PubMed  Google Scholar 

  66. Rewa OG, Villeneuve PM, Lachance P et al (2017) Quality indicators of continuous renal replacement therapy (CRRT) care in critically ill patients: a systematic review. Intensive Care Med 43:750–763

    Article  PubMed  Google Scholar 

  67. Rewa OG, Eurich DT, Noel Gibney RT et al (2018) A modified Delphi process to identify, rank and prioritize quality indicators for continuous renal replacement therapy (CRRT) care in critically ill patients. J Crit Care 47:145–152

    Article  PubMed  Google Scholar 

  68. Harvey MJ, Gaies MG, Prosser LA (2015) U.S. and international in-hospital costs of extracorporeal membrane oxygenation: a systematic review. Appl Health Econ Health Policy 13:341–357

    Article  PubMed  Google Scholar 

  69. Peek GJ, Mugford M, Tiruvoipati R et al (2009) Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet 374:1351–1363

    Article  PubMed  Google Scholar 

  70. Braune S, Burchardi H, Engel M et al (2015) The use of extracorporeal carbon dioxide removal to avoid intubation in patients failing non-invasive ventilation–a cost analysis. BMC Anesthesiol 15:160

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Bellani G, Laffey JG, Pham T et al (2016) Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA 315:788–800

    Article  CAS  PubMed  Google Scholar 

  72. Ethgen O, Goldstein J, Harenski K et al (2021) A preliminary cost-effectiveness analysis of lung protective ventilation with extra corporeal carbon dioxide removal (ECCO(2)R) in the management of acute respiratory distress syndrome (ARDS). J Crit Care 63:45–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Brodie D, Vincent JL, Brochard LJ et al (2018) Research in extracorporeal life support: a call to action. Chest 153:788–791

    Article  PubMed  Google Scholar 

  74. Abrams D, Schmidt M, Pham T et al (2020) Mechanical ventilation for acute respiratory distress syndrome during extracorporeal life support. Research and practice. Am J Respir Crit Care Med 201:514–525

    Article  PubMed  Google Scholar 

  75. Hodgson CL, Burrell AJC, Engeler DM et al (2019) Core outcome measures for research in critically ill patients receiving extracorporeal membrane oxygenation for acute respiratory or cardiac failure: an international, multidisciplinary, modified Delphi consensus study. Crit Care Med 47:1557–1563

    Article  PubMed  Google Scholar 

  76. Hodgson CL, Fulcher B, Mariajoseph FP et al (2021) A core outcome set for research in patients on extracorporeal membrane oxygenation. Crit Care Med. https://doi.org/10.1097/CCM.0000000000005110

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ranieri VM, Brodie D, Vincent JL (2017) Extracorporeal organ support: from technological tool to clinical strategy supporting severe organ failure. JAMA 318:1105–1106

    Article  PubMed  Google Scholar 

  78. The International ECMO Network (ECMOnet). http://www.internationalecmonetwork.org/. Accessed 14 Mar 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Combes.

Ethics declarations

Conflicts of interest

AC reports grants and personal fees from MAQUET, Xenios, and Baxter. AC was a past president of EuroELSO and is a member of the executive and scientific committees of ECMONet. DB reports research support from ALung Technologies, and personal fees from Abiomed, Xenios, Medtronic, Inspira and Cellenkos. DB is the President-elect of the Extracorporeal Life Support Organization (ELSO) and the Chair of the Executive Committee of the International ECMO Network (ECMONet). GC reports personal fees, travel expenses from Baxter and Fresenius. JLD reports research supports, grants and personal fees from ALung Technologies, Xenios, Fresenius Medical Care and Baxter. SK received research support from Cytosorbents and Daiichi Sankyo. He also received lecture fees from Astra, Bard, Baxter, Biotest, Cytosorbents, Daiichi Sankyo, Fresenius Medical Care, Gilead, Mitsubishi Tanabe Pharma, MSD, Pfizer, Philips and Zoll. He received consultant fees from Fresenius, Gilead, MSD and Pfizer. DFM reported receiving a grant from the NIHR HTA Programme for the conduct of the REST study. Outside of the submitted work, DFM has received funding to his institution for other studies from the NIHR, Wellcome Trust, Innovate UK, Northern Ireland Health and Social Care Research and Development Office and Randox. DFM has a patent application for an anti-inflammatory treatment issued to his institution. DFM has received fees for consultancy from Bayer, GSK, Boehringer Ingelheim, Eli Lilly and Novartis and SOBI and for being a member of the data monitoring and ethics committee for Vir Biotechnology and Faron studies and as an educational seminar speaker for GSK. MS reports personal fees from Getinge, Xenios, Fresenius Medical Care, Drager, and Baxter. MS is the chair of the scientific committee of EuroELSO. ASS reports personal fees from Xenios and Baxter; he is Chair of the Scientific Committee of the International ECMO Network (ECMONet). SJ reports SJ consulting fees from Drager, Fresenius-Xenios, Baxter, Medtronic, Mindray and Fisher & Paykel. Other authors declare no competing interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Combes, A., Brodie, D., Aissaoui, N. et al. Extracorporeal carbon dioxide removal for acute respiratory failure: a review of potential indications, clinical practice and open research questions. Intensive Care Med 48, 1308–1321 (2022). https://doi.org/10.1007/s00134-022-06796-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00134-022-06796-w

Keywords

Navigation