Xu JR, Zhu JM, Jiang J, Ding XQ, Fang Y, Shen B, Liu ZH, Zou JZ, Liu L, Wang CS, Ronco C, Liu H, Teng J (2015) Risk factors for long-term mortality and progressive chronic kidney disease associated with acute kidney injury after cardiac surgery. Medicine 94:e2025
CAS
Article
PubMed
PubMed Central
Google Scholar
Venkatachalam MA, Weinberg JM, Kriz W, Bidani AK (2015) Failed tubule recovery, AKI-CKD transition, and kidney disease progression. J Am Soc Nephrol 26:1765–1776
CAS
Article
PubMed
PubMed Central
Google Scholar
Varrier M, Forni LG, Ostermann M (2015) Long-term sequelae from acute kidney injury: potential mechanisms for the observed poor renal outcomes. Crit Care 19:102
Article
PubMed
PubMed Central
Google Scholar
Schmitt R, Coca S, Kanbay M, Tinetti ME, Cantley LG, Parikh CR (2008) Recovery of kidney function after acute kidney injury in the elderly: a systematic review and meta-analysis. Am J Kidney Dis 52:262–271
Article
PubMed
Google Scholar
Pannu N, James M, Hemmelgarn B, Klarenbach S, Alberta Kidney Disease N (2013) Association between AKI, recovery of renal function, and long-term outcomes after hospital discharge. Clin J Am Soc Nephrol 8:194–202
Article
PubMed
Google Scholar
Gammelager H, Christiansen CF, Johansen MB, Tonnesen E, Jespersen B, Sorensen HT (2013) Five-year risk of end-stage renal disease among intensive care patients surviving dialysis-requiring acute kidney injury: a nationwide cohort study. Crit Care 17:145
Article
Google Scholar
Basile DP, Bonventre JV, Mehta R, Nangaku M, Unwin R, Rosner MH, Kellum JA, Ronco C (2016) Progression after AKI: understanding maladaptive repair processes to predict and identify therapeutic treatments. J Am Soc Nephrol 27:687–697
CAS
Article
PubMed
Google Scholar
Ali T, Khan I, Simpson W, Prescott G, Townend J, Smith W, Macleod A (2007) Incidence and outcomes in acute kidney injury: a comprehensive population-based study. J Am Soc Nephrol 18:1292–1298
CAS
Article
PubMed
Google Scholar
Finkenstaedt JT, Merrill JP (1956) Renal function after recovery from acute renal failure. N Engl J Med 254:1023–1026
CAS
Article
PubMed
Google Scholar
Coca SG, Singanamala S, Parikh CR (2012) Chronic kidney disease after acute kidney injury: a systematic review and meta-analysis. Kidney Int 81:442–448
Article
PubMed
Google Scholar
Macedo E, Bouchard J, Mehta RL (2008) Renal recovery following acute kidney injury. Curr Opin Crit Care 14:660–665
Article
PubMed
Google Scholar
Kellum JA, Sileanu FE, Bihorac A, Hoste EA, Chawla LS (2017) Recovery after acute kidney injury. Am J Respir Crit Care Med 195:784–791
Article
PubMed
Google Scholar
Kumar S, Liu J, McMahon AP (2014) Defining the acute kidney injury and repair transcriptome. Semin Nephrol 34:404–417
CAS
Article
PubMed
PubMed Central
Google Scholar
Siew ED, Ikizler TA, Matheny ME, Shi Y, Schildcrout JS, Danciu I, Dwyer JP, Srichai M, Hung AM, Smith JP, Peterson JF (2012) Estimating baseline kidney function in hospitalized patients with impaired kidney function. Clin J Am Soc Nephrol 7:712–719
Article
PubMed
PubMed Central
Google Scholar
Carlier M, Dumoulin A, Janssen A, Picavet S, Vanthuyne S, Van Eynde R, Vanholder R, Delanghe J, De Schoenmakere G, De Waele JJ, Hoste EA (2015) Comparison of different equations to assess glomerular filtration in critically ill patients. Intensive Care Med 41:427–435
Article
PubMed
Google Scholar
Ronco C, Rosner MH (2012) Acute kidney injury and residual renal function. Crit Care 16:144
Article
PubMed
PubMed Central
Google Scholar
Siew ED, Matheny ME (2015) Choice of reference serum creatinine in defining acute kidney injury. Nephron 131:107–112
CAS
Article
PubMed
PubMed Central
Google Scholar
Bernardi MH, Schmidlin D, Ristl R, Heitzinger C, Schiferer A, Neugebauer T, Wrba T, Hiesmayr M, Druml W, Lassnigg A (2016) Serum creatinine back-estimation in cardiac surgery patients: misclassification of AKI using existing formulae and a data-driven model. Clin J Am Soc Nephrol 11:395–404
CAS
Article
PubMed
PubMed Central
Google Scholar
Schetz M, Gunst J, De Vlieger G, Van den Berghe G (2015) Recovery from AKI in the critically ill: potential confounders in the evaluation. Intensive Care Med 41:1648–1657
CAS
Article
PubMed
Google Scholar
Prowle JR (2013) Acute kidney injury: creatinine and AKI—through a glass, darkly. Nat Rev Nephrol 9:193–195
CAS
Article
PubMed
Google Scholar
Heung M, Steffick DE, Zivin K, Gillespie BW, Banerjee T, Hsu CY, Powe NR, Pavkov ME, Williams DE, Saran R, Shahinian VB, Centers for Disease Control and Prevention CKD Surveillance Team (2016) Acute kidney injury recovery pattern and subsequent risk of CKD: an analysis of veterans health administration data. Am J Kidney Dis 67:742–752
Article
PubMed
Google Scholar
Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group (2012) KDIGO clinical practice guideline for acute kidney injury. Kidney Inter 2:1–138
Article
Google Scholar
Chawla LS, Bellomo R, Bihorac A, Goldstein SL, Siew ED, Bagshaw SM, Bittleman D, Cruz D, Endre Z, Fitzgerald RL, Forni L, Kane-Gill SL, Hoste E, Koyner J, Liu KD, Macedo E, Mehta R, Murray P, Nadim M, Ostermann M, Palevsky PM, Pannu N, Rosner M, Wald R, Zarbock A, Ronco C, Kellum JA, Acute Disease Quality Initiative Workgroup 16 (2017) Acute kidney disease and renal recovery: consensus report of the Acute Disease Quality Initiative (ADQI) 16 Workgroup. Nat Revi Nephrol 13:241–257
Article
Google Scholar
Prowle JR, Kolic I, Purdell-Lewis J, Taylor R, Pearse RM, Kirwan CJ (2014) Serum creatinine changes associated with critical illness and detection of persistent renal dysfunction after AKI. Clin J Am Soc Nephrol 9:1015–1023
CAS
Article
PubMed
PubMed Central
Google Scholar
Stevens PE, Levin A (2013) Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med 158:825–830
Article
PubMed
Google Scholar
Doig GS, Simpson F, Bellomo R, Heighes PT, Sweetman EA, Chesher D, Pollock C, Davies A, Botha J, Harrigan P, Reade MC (2015) Intravenous amino acid therapy for kidney function in critically ill patients: a randomized controlled trial. Intensive Care Med 41:1197–1208
CAS
Article
PubMed
Google Scholar
Chen S (2013) Retooling the creatinine clearance equation to estimate kinetic GFR when the plasma creatinine is changing acutely. J Am Soc Nephrol 24:877–888
Article
PubMed
Google Scholar
Dewitte A, Joannes-Boyau O, Sidobre C, Fleureau C, Bats ML, Derache P, Leuillet S, Ripoche J, Combe C, Ouattara A (2015) Kinetic eGFR and novel AKI biomarkers to predict renal recovery. Clin J Am Soc Nephrol 10:1900–1910
CAS
Article
PubMed
PubMed Central
Google Scholar
Wang E, Meier DJ, Sandoval RM, Von Hendy-Willson VE, Pressler BM, Bunch RM, Alloosh M, Sturek MS, Schwartz GJ, Molitoris BA (2012) A portable fiberoptic ratiometric fluorescence analyzer provides rapid point-of-care determination of glomerular filtration rate in large animals. Kidney Int 81:112–117
Article
PubMed
Google Scholar
Rajagopalan R, Neumann WL, Poreddy AR, Fitch RM, Freskos JN, Asmelash B, Gaston KR, Galen KP, Shieh JJ, Dorshow RB (2011) Hydrophilic pyrazine dyes as exogenous fluorescent tracer agents for real-time point-of-care measurement of glomerular filtration rate. J Med Chem 54:5048–5058
CAS
Article
PubMed
Google Scholar
Molitoris BA, Reilly ES (2016) Quantifying glomerular filtration rates in acute kidney injury: a requirement for translational success. Semin Nephrol 36:31–41
Article
PubMed
PubMed Central
Google Scholar
Srisawat N, Murugan R, Lee M, Kong L, Carter M, Angus DC, Kellum JA, Genetic, Inflammatory Markers of Sepsis Study I (2011) Plasma neutrophil gelatinase-associated lipocalin predicts recovery from acute kidney injury following community-acquired pneumonia. Kidney Int 80:545–552
CAS
Article
PubMed
PubMed Central
Google Scholar
Srisawat N, Wen X, Lee M, Kong L, Elder M, Carter M, Unruh M, Finkel K, Vijayan A, Ramkumar M, Paganini E, Singbartl K, Palevsky PM, Kellum JA (2011) Urinary biomarkers and renal recovery in critically ill patients with renal support. Clin J Am Soc Nephrol 6:1815–1823
CAS
Article
PubMed
PubMed Central
Google Scholar
Lin YF, Ko WJ, Chu TS, Chen YS, Wu VC, Chen YM, Wu MS, Chen YW, Tsai CW, Shiao CC, Li WY, Hu FC, Tsai PR, Tsai TJ, Wu KD, NSARF Study Group (2009) The 90-day mortality and the subsequent renal recovery in critically ill surgical patients requiring acute renal replacement therapy. Am J Surg 198:325–332
Article
PubMed
Google Scholar
Ko GJ, Grigoryev N, Linfert D, Jang HR, Watkins T, Cheadle C, Racusen L, Rabb H (2010) Transcriptional analysis of kidneys during repair from AKI reveals possible roles for NGAL and KIM-1 as biomarkers of AKI-to-CKD transition. Am J Physiol Renal Physiol 298:F1472–F1483
CAS
Article
PubMed
Google Scholar
Zeng X-F, Li J-M, Tan Y, Wang Z-F, He Y, Chang J, Zhang H, Zhao H, Bai X, Xie F, Sun J, Zhang Y (2014) Performance of urinary NGAL and L-FABP in predicting acute kidney injury and subsequent renal recovery: a cohort study based on major surgeries. Clin Chem Lab Med 52:671
CAS
PubMed
Google Scholar
Dewitte A, Joannès-Boyau O, Sidobre C, Fleureau C, Bats M-L, Derache P, Leuillet S, Ripoche J, Combe C, Ouattara A (2015) Kinetic eGFR and novel AKI biomarkers to predict renal recovery. Clin J Am Soc Nephrol 10:1900
CAS
Article
PubMed
PubMed Central
Google Scholar
Mansour SG, Puthumana J, Coca SG, Gentry M, Parikh CR (2017) Biomarkers for the detection of renal fibrosis and prediction of renal outcomes: a systematic review. BMC Nephrol 18:72
Article
PubMed
PubMed Central
Google Scholar
Puthumana J, Hall IE, Reese PP, Schroppel B, Weng FL, Thiessen-Philbrook H, Doshi MD, Rao V, Lee CG, Elias JA, Cantley LG, Parikh CR (2017) YKL-40 associates with renal recovery in deceased donor kidney transplantation. J Am Soc Nephrol 28:661–670
Article
PubMed
Google Scholar
Neyra JA, Manllo J, Li X, Jacobsen G, Yee J, Yessayan L, AKICI Study Group (2014) Association of de novo dipstick albuminuria with severe acute kidney injury in critically ill septic patients. Nephron Clin Pract 128:373–380
CAS
Article
PubMed
Google Scholar
Levitsky J, Baker TB, Jie C, Ahya S, Levin M, Friedewald J, Al-Saden P, Salomon DR, Abecassis MM (2014) Plasma protein biomarkers enhance the clinical prediction of kidney injury recovery in patients undergoing liver transplantation. Hepatology 60:2017–2026
Yang T, Sun S, Zhao Y, Liu Q, Han M, Lin L, Su B, Huang S, Yang L (2017) Biomarkers upon discontinuation of renal replacement therapy predict 60-day survival and renal recovery in critically ill patients with acute kidney injury. Hemodial Int. doi:10.1111/hdi.12532
Ruggenenti P, Perna A, Mosconi L, Matalone M, Pisoni R, Gaspari F, Remuzzi G (1997) Proteinuria predicts end-stage renal failure in non-diabetic chronic nephropathies. The “Gruppo Italiano di Studi Epidemiologici in Nefrologia” (GISEN). Kidney Int Suppl 63:S54–57
CAS
PubMed
Google Scholar
Huang TM, Wu VC, Young GH, Lin YF, Shiao CC, Wu PC, Li WY, Yu HY, Hu FC, Lin JW, Chen YS, Lin YH, Wang SS, Hsu RB, Chang FC, Chou NK, Chu TS, Yeh YC, Tsai PR, Huang JW, Lin SL, Chen YM, Ko WJ, Wu KD, National Taiwan University Hospital Study Group of Acute Renal Failure (2011) Preoperative proteinuria predicts adverse renal outcomes after coronary artery bypass grafting. J Am Soc Nephrol 22:156–163
Molnar AO, Parikh CR, Sint K, Coca SG, Koyner J, Patel UD, Butrymowicz I, Shlipak M, Garg AX (2012) Association of postoperative proteinuria with AKI after cardiac surgery among patients at high risk. Clin J Am Soc Nephrol 7:1749–1760
Article
PubMed
PubMed Central
Google Scholar
Hu JY, Meng XC, Han J, Xiang F, Fang YD, Wu J, Peng YZ, Wu YZ, Huang YS, Luo QZ (2012) Relation between proteinuria and acute kidney injury in patients with severe burns. Crit Care 16:R172
Han SS, Ahn SY, Ryu J, Baek SH, Chin HJ, Na KY, Chae DW, Kim S (2014) Proteinuria and hematuria are associated with acute kidney injury and mortality in critically ill patients: a retrospective observational study. BMC Nephrol 15:93
Article
PubMed
PubMed Central
Google Scholar
Horne KL, Packington R, Monaghan J, Reilly T, McIntyre CW, Selby NM (2014) The effects of acute kidney injury on long-term renal function and proteinuria in a general hospitalised population. Nephron Clin Pract 128:192–200
Article
PubMed
Google Scholar
Lim CT, Tan HK, Lau YK (2014) The significance of tubular and glomerular proteinuria in critically ill patients with severe acute kidney injury. Pak J Med Sci 30:1186–1190
PubMed
PubMed Central
Google Scholar
Bagshaw SM (2006) Epidemiology of renal recovery after acute renal failure. Curr Opin Crit Care 12:544–550
PubMed
Google Scholar
Alves SC, Tomasi CD, Constantino L, Giombelli V, Candal R, Bristot Mde L, Topanotti MF, Burdmann EA, Dal-Pizzol F, Fraga CM, Ritter C (2013) Hypomagnesemia as a risk factor for the non-recovery of the renal function in critically ill patients with acute kidney injury. Nephrol Dial Transpl 28:910–916
Article
Google Scholar
Bihorac A, Yavas S, Subbiah S, Hobson CE, Schold JD, Gabrielli A, Layon AJ, Segal MS (2009) Long-term risk of mortality and acute kidney injury during hospitalization after major surgery. Ann Surg 249:851–858
Article
PubMed
Google Scholar
Gammelager H, Christiansen CF, Johansen MB, Tonnesen E, Jespersen B, Sorensen HT (2014) Three-year risk of cardiovascular disease among intensive care patients with acute kidney injury: a population-based cohort study. Crit Care 18:492
Garzotto F, Piccinni P, Cruz D, Gramaticopolo S, Dal Santo M, Aneloni G, Kim JC, Rocco M, Alessandri E, Giunta F, Michetti V, Iannuzzi M, Belluomo Anello C, Brienza N, Carlini M, Pelaia P, Gabbanelli V, Ronco C (2011) RIFLE-based data collection/management system applied to a prospective cohort multicenter Italian study on the epidemiology of acute kidney injury in the intensive care unit. Blood Purif 31:159–171
Article
PubMed
Google Scholar
Harris DG, Koo G, McCrone MP, Scalea TM, Chiu WC, Diaz JJ, Lissauer ME (2014) Recurrent kidney injury in critically ill surgical patients is common and associated with worse outcomes. J Trauma Acute Care Surg 76:1397–1401
Article
PubMed
Google Scholar
Helgadottir S, Sigurdsson MI, Palsson R, Helgason D, Sigurdsson GH, Gudbjartsson T (2016) Renal recovery and long-term survival following acute kidney injury after coronary artery surgery: a nationwide study. Acta Anaesthesiol Scand 60:1230–1240
CAS
Article
PubMed
Google Scholar
Kellum JA, Chawla LS, Keener C, Singbartl K, Palevsky PM, Pike FL, Yealy DM, Huang DT, Angus DC (2016) The effects of alternative resuscitation strategies on acute kidney injury in patients with septic shock. Am J Respir Crit Care Med 193:281–287
CAS
Article
PubMed
PubMed Central
Google Scholar
Bagshaw SM, Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Oudemans-van Straaten HM, Ronco C, Kellum JA, Beginning and Ending Supportive Therapy for the Kidney (BEST Kidney) Investigators (2007) Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clin J Am Soc Nephrol 2:431–439
Article
PubMed
Google Scholar
Chawla LS, Amdur RL, Amodeo S, Kimmel PL, Palant CE (2011) The severity of acute kidney injury predicts progression to chronic kidney disease. Kidney Int 79:1361–1369
Article
PubMed
PubMed Central
Google Scholar
Lai CF, Wu VC, Huang TM, Yeh YC, Wang KC, Han YY, Lin YF, Jhuang YJ, Chao CT, Shiao CC, Tsai PR, Hu FC, Chou NK, Ko WJ, Wu KD, National Taiwan University Hospital Study Group on Acute Renal Failure (2012) Kidney function decline after a non-dialysis-requiring acute kidney injury is associated with higher long-term mortality in critically ill survivors. Crit Care 16:R123
Macedo E, Zanetta DM, Abdulkader RC (2012) Long-term follow-up of patients after acute kidney injury: patterns of renal functional recovery. PLoS One 7:e36388
CAS
Article
PubMed
PubMed Central
Google Scholar
Rimes-Stigare C, Frumento P, Bottai M, Martensson J, Martling CR, Walther SM, Karlstrom G, Bell M (2015) Evolution of chronic renal impairment and long-term mortality after de novo acute kidney injury in the critically ill; a Swedish multi-centre cohort study. Crit Care 19:221
Schiffl H, Lang SM, Fischer R (2012) Long-term outcomes of survivors of ICU acute kidney injury requiring renal replacement therapy: a 10-year prospective cohort study. Clin Kidney J 5:297–302
Article
PubMed
PubMed Central
Google Scholar
Wald R, Shariff SZ, Adhikari NK, Bagshaw SM, Burns KE, Friedrich JO, Garg AX, Harel Z, Kitchlu A, Ray JG (2014) The association between renal replacement therapy modality and long-term outcomes among critically ill adults with acute kidney injury: a retrospective cohort study. Crit Care Med 42:868–877
CAS
Article
PubMed
Google Scholar
Gallagher M, Cass A, Bellomo R, Finfer S, Gattas D, Lee J, Lo S, McGuinness S, Myburgh J, Parke R, Rajbhandari D, POST-RENAL Study Investigators and the ANZICS Clinical Trials Group (2014) Long-term survival and dialysis dependency following acute kidney injury in intensive care: extended follow-up of a randomized controlled trial. PLoS Med 11:e1001601
Article
PubMed
PubMed Central
Google Scholar
Bell M, SWING, Granath F, Schon S, Ekbom A, Martling CR (2007) Continuous renal replacement therapy is associated with less chronic renal failure than intermittent haemodialysis after acute renal failure. Intensive Care Med 33:773–780
Article
PubMed
Google Scholar
Harel Z, Bell CM, Dixon SN, McArthur E, James MT, Garg AX, Harel S, Silver S, Wald R (2014) Predictors of progression to chronic dialysis in survivors of severe acute kidney injury: a competing risk study. BMC Nephrol 15:114
Article
PubMed
PubMed Central
Google Scholar
Schneider AG, Bellomo R, Bagshaw SM, Glassford NJ, Lo S, Jun M, Cass A, Gallagher M (2013) Choice of renal replacement therapy modality and dialysis dependence after acute kidney injury: a systematic review and meta-analysis. Intensive Care Med 39:987–997
CAS
Article
PubMed
Google Scholar
Uehlinger DE, Jakob SM, Ferrari P, Eichelberger M, Huynh-Do U, Marti HP, Mohaupt MG, Vogt B, Rothen HU, Regli B, Takala J, Frey FJ (2005) Comparison of continuous and intermittent renal replacement therapy for acute renal failure. Nephrol Dial Transpl 20:1630–1637
Article
Google Scholar
Mehta RL, McDonald B, Gabbai FB, Pahl M, Pascual MT, Farkas A, Kaplan RM, Collaborative Group for Treatment of ARFitICU (2001) A randomized clinical trial of continuous versus intermittent dialysis for acute renal failure. Kidney Int 60:1154–1163
Bouchard J, Acharya A, Cerda J, Maccariello ER, Madarasu RC, Tolwani AJ, Liang X, Fu P, Liu ZH, Mehta RL (2015) A prospective international multicenter study of AKI in the intensive care unit. Clin J Am Soc Nephrol 10:1324–1331
Article
PubMed
PubMed Central
Google Scholar
Augustine JJ, Sandy D, Seifert TH, Paganini EP (2004) A randomized controlled trial comparing intermittent with continuous dialysis in patients with ARF. Am J Kidney Dis 44:1000–1007
Article
PubMed
Google Scholar
Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo E, Gibney N, Tolwani A, Straaten HO, Ronco C, Kellum JA (2009) Discontinuation of continuous renal replacement therapy: a post hoc analysis of a prospective multicenter observational study. Crit Care Med 37:2576–2582
Article
PubMed
Google Scholar
Ishani A, Nelson D, Clothier B, Schult T, Nugent S, Greer N, Slinin Y, Ensrud KE (2011) The magnitude of acute serum creatinine increase after cardiac surgery and the risk of chronic kidney disease, progression of kidney disease, and death. Arch Intern Med 171:226–233
Article
PubMed
Google Scholar
Clark EG, Bagshaw SM (2015) Unnecessary renal replacement therapy for acute kidney injury is harmful for renal recovery. Semin Dial 28:6–11
Article
PubMed
Google Scholar
Elseviers MM, Lins RL, Van der Niepen P, Hoste E, Malbrain ML, Damas P, Devriendt J, SHARF investigators (2010) Renal replacement therapy is an independent risk factor for mortality in critically ill patients with acute kidney injury. Crit Care 14:R221
Liang KV, Sileanu FE, Clermont G, Murugan R, Pike F, Palevsky PM, Kellum JA (2016) Modality of RRT and recovery of kidney function after AKI in patients surviving to hospital discharge. Clin J Am Soc Nephrol 11:30–38
CAS
Article
PubMed
Google Scholar
Truche AS, Darmon M, Bailly S, Clec’h C, Dupuis C, Misset B, Azoulay E, Schwebel C, Bouadma L, Kallel H, Adrie C, Dumenil AS, Argaud L, Marcotte G, Jamali S, Zaoui P, Laurent V, Goldgran-Toledano D, Sonneville R, Souweine B, Timsit JF, OUTCOMEREA Study Group (2016) Continuous renal replacement therapy versus intermittent hemodialysis in intensive care patients: impact on mortality and renal recovery. Intensive Care Med 42:1408–1417
Joannidis M, Druml W, Forni LG, Groeneveld AB, Honore P, Oudemans-van Straaten HM, Ronco C, Schetz MR, Woittiez AJ (2010) Prevention of acute kidney injury and protection of renal function in the intensive care unit. Expert opinion of the Working Group for Nephrology, ESICM. Intensive Care Med 36:392–411
Article
PubMed
Google Scholar
Guo J, Guan Q, Liu X, Wang H, Gleave ME, Nguan CY, Du C (2016) Relationship of clusterin with renal inflammation and fibrosis after the recovery phase of ischemia-reperfusion injury. BMC Nephrol 17:133
Article
PubMed
PubMed Central
Google Scholar
Nguan CY, Guan Q, Gleave ME, Du C (2014) Promotion of cell proliferation by clusterin in the renal tissue repair phase after ischemia-reperfusion injury. Am J Physiol Renal Physiol 306:F724–733
CAS
Article
PubMed
Google Scholar
Rodriguez-Romo R, Benitez K, Barrera-Chimal J, Perez-Villalva R, Gomez A, Aguilar-Leon D, Rangel-Santiago JF, Huerta S, Gamba G, Uribe N, Bobadilla NA (2016) AT1 receptor antagonism before ischemia prevents the transition of acute kidney injury to chronic kidney disease. Kidney Int 89:363–373
CAS
Article
PubMed
Google Scholar
Skrypnyk NI, Voziyan P, Yang H, de Caestecker CR, Theberge MC, Drouin M, Hudson B, Harris RC, de Caestecker MP (2016) Pyridoxamine reduces postinjury fibrosis and improves functional recovery after acute kidney injury. Am J Physiol Renal Physiol 311:F268–277
CAS
Article
PubMed
Google Scholar
Shi M, Flores B, Gillings N, Bian A, Cho HJ, Yan S, Liu Y, Levine B, Moe OW, Hu MC (2016) αKlotho mitigates progression of AKI to CKD through activation of autophagy. J Am Soc Nephrol 27:2331–2345
CAS
Article
PubMed
Google Scholar
Perry HM, Huang L, Ye H, Liu C, Sung SJ, Lynch KR, Rosin DL, Bajwa A, Okusa MD (2016) Endothelial sphingosine 1-phosphate receptor-1 mediates protection and recovery from acute kidney injury. J Am Soc Nephrol 27:3383–3393
Article
PubMed
Google Scholar
Wu VC, Wu CH, Huang TM, Wang CY, Lai CF, Shiao CC, Chang CH, Lin SL, Chen YY, Chen YM, Chu TS, Chiang WC, Wu KD, Tsai PR, Chen L, Ko WJ, NSARF Group (2014) Long-term risk of coronary events after AKI. J Am Soc Nephrol 25:595–605
Matsushita K, Coresh J, Sang Y, Chalmers J, Fox C, Guallar E, Jafar T, Jassal SK, Landman GW, Muntner P, Roderick P, Sairenchi T, Schottker B, Shankar A, Shlipak M, Tonelli M, Townend J, van Zuilen A, Yamagishi K, Yamashita K, Gansevoort R, Sarnak M, Warnock DG, Woodward M, Arnlov J, CKD Prognosis Consortium (2015) Estimated glomerular filtration rate and albuminuria for prediction of cardiovascular outcomes: a collaborative meta-analysis of individual participant data. Lancet Diabetes Endocrinol 3:514–525
Levey AS, de Jong PE, Coresh J, El Nahas M, Astor BC, Matsushita K, Gansevoort RT, Kasiske BL, Eckardt KU (2011) The definition, classification, and prognosis of chronic kidney disease: a KDIGO controversies conference report. Kidney Int 80:17–28
Article
PubMed
Google Scholar
Siew ED, Peterson JF, Eden SK, Hung AM, Speroff T, Ikizler TA, Matheny ME (2012) Outpatient nephrology referral rates after acute kidney injury. J Am Soc Nephrol 23:305–312
CAS
Article
PubMed
PubMed Central
Google Scholar
Kirwan CJ, Blunden MJ, Dobbie H, James A, Nedungadi A, Prowle JR (2015) Critically ill patients requiring acute renal replacement therapy are at an increased risk of long-term renal dysfunction, but rarely receive specialist nephrology follow-up. Nephron 129:164–170
CAS
Article
PubMed
Google Scholar
Silver SA, Goldstein SL, Harel Z, Harvey A, Rompies EJ, Adhikari NK, Acedillo R, Jain AK, Richardson R, Chan CT, Chertow GM, Bell CM, Wald R (2015) Ambulatory care after acute kidney injury: an opportunity to improve patient outcomes. Can J Kidney Health Dis 2:36
Article
PubMed
PubMed Central
Google Scholar
Silver SA, Harel Z, Harvey A, Adhikari NK, Slack A, Acedillo R, Jain AK, Richardson RM, Chan CT, Chertow GM, Bell CM, Wald R (2015) Improving care after acute kidney injury: a prospective time series study. Nephron 131:43–50
Article
PubMed
Google Scholar
Harel Z, Wald R, Bargman JM, Mamdani M, Etchells E, Garg AX, Ray JG, Luo J, Li P, Quinn RR, Forster A, Perl J, Bell CM (2013) Nephrologist follow-up improves all-cause mortality of severe acute kidney injury survivors. Kidney Int 83:901–908
Article
PubMed
Google Scholar
Bolanos JA, Yuan CM, Little DJ, Oliver DK, Howard SR, Abbott KC, Olson SW (2015) Outcomes after post-traumatic AKI requiring RRT in United States military service members. Clin J Am Soc Nephrol 10:1732–1739
CAS
Article
PubMed
PubMed Central
Google Scholar
Stoumpos S, Mark PB, McQuarrie EP, Traynor JP, Geddes CC (2017) Continued monitoring of acute kidney injury survivors might not be necessary in those regaining an estimated glomerular filtration rate >60 mL/min at 1 year. Nephrol Dial Transpl 32:81–88
Google Scholar
The National Collaborating Centre for Chronic Conditions (UK) (2008) Chronic kidney disease: national clinical guideline for early identification and management in adults in primary and secondary care. Royal College of Physicians, London
Jafar TH, Stark PC, Schmid CH, Landa M, Maschio G, Marcantoni C, de Jong PE, de Zeeuw D, Shahinfar S, Ruggenenti P, Remuzzi G, Levey AS, AIPRD Study Group (2001) Proteinuria as a modifiable risk factor for the progression of non-diabetic renal disease. Kidney Int 60:1131–1140
CAS
Article
PubMed
Google Scholar
Morris RL, Ashcroft D, Phipps D, Bower P, O’Donoghue D, Roderick P, Harding S, Lewington A, Blakeman T (2016) Preventing acute kidney injury: a qualitative study exploring ‘sick day rules’ implementation in primary care. BMC Fam Pract 17:91
Article
PubMed
PubMed Central
Google Scholar