Neurological sequence in the dying process
Forum participants identified several major sequential events in the dying process of patients who have suffered a catastrophic brain injury that will lead to death determined on a neurological basis (such as, but not limited to, traumatic brain injury, cerebrovascular accidents, and hypoxic-ischaemic encephalopathy after resuscitated cardiac arrest) (Fig. 1). This sequence does not apply to patients with anencephaly or with forms of catastrophic brain injury (such as persistent vegetative states) where residual clinical brain or brainstem functions are retained; such patients were not under consideration. Patients entering this sequence are receiving mechanical ventilation; various other neuroprotective interventions (such as hyperosmolar therapy, ventricular drainage, decompressive craniectomy) may have been initiated as well. At N-1, the patient continues to deteriorate in spite of intervention and the treatment team recognizes that the patient may evolve to brain death. At N-2, the deterioration has continued to a point that brain function has ceased. However, at this point it is still possible that brain function could return spontaneously or be restored through intervention. If preconditions are met, confounding factors are absent, and no effective treatment is available or implemented, then by N-3, the brain has ceased functioning and there is no possibility to resume. The patient has died.
Preconditions prior to testing brain function at any point in the sequence include an established etiology; absence of reversible etiologies that would explain the coma; and the absence of hemodynamic shock associated with inadequate oxygenated circulation to the brain [12]. Confounding conditions that may invalidate testing for cessation of brain function include naturally occurring or therapeutic hypothermia; the presence of central nervous system (CNS) depressing drugs that may explain or contribute to coma; high cervical spine injury; acquired (such as severe polyneuropathy) or therapeutic neuromuscular paralysis; locked-in syndromes; and severe acid-base, electrolyte or endocrine abnormalities that may explain or contribute to coma [13]. After agreeing that death is principally established using clinical criteria (defined as diagnostic testing based on direct, measurable observation or examination of the patient; see Table 1), participants came to consensus on the “minimum acceptable clinical standards” to test for the cessation of brain function (Table 2). It was also agreed that the validity of a determination of death depends upon the health care professionals performing the clinical determination and those performing and interpreting ancillary laboratory testing possessing the necessary competencies.
Table 2 Minimum acceptable clinical standard and additional tests for death after cessation of brain function in adults and children
Circulatory sequence in the dying process
Forum participants identified several major sequential events in the dying process of patients who suffer a circulatory arrest (Fig. 2). In situation A, the patient has had a cardiac arrest but no CPR intervention, either because CPR was not medically indicated or the patient (or surrogate decision maker) declined it; this would include terminally ill patients whose end-of-life care involves limiting or withdrawing life-sustaining therapies. At C-1, the patient’s circulation and breathing stop. After a certain time period (between 2 and 5 min, based on expert consensus) [14], autoresuscitation-the spontaneous, unassisted resumption of circulation-is no longer a possibility under these conditions (C-2). There is currently no published evidence demonstrating autoresuscitation under these conditions [15–17]. Since no interventions will be made to attempt to restore circulation, cessation of breathing and circulation is permanent and the patient may be determined to be dead (C-2 and C-3 occur at the same time). In situation B, CPR has been used in an attempt to restore circulation and respiration but has been terminated because the patient cannot be revived. Once the time interval when autoresuscitation is possible has passed, cessation of breathing and circulation is permanent and the patient may be determined to be dead. International practice varies with regard to this time interval between C-1 and C-2. The most common waiting period is 5 min with a range from 2 to 10 min [18]. The participants came to consensus on the ‘minimum acceptable clinical standards’ to test for the cessation of circulatory function (Table 3).
Table 3 Minimum acceptable clinical standard and additional tests for death after cessation of circulatory function in adults and children
Integrated neurological and circulatory sequence in the dying process
The inextricable link between circulation and brain function means that the neurological and circulatory sequences integrate at several points in the dying process of patients who have suffered a circulatory arrest (Fig. 3). Once circulation and breathing cease (C-1), there is a short time period between C1 and N2 (<20 s) during which brain function ceases (N-2) as evidenced by isoelectric EEG [19–21]. The longer the time period without oxygenated circulation to the brain (N-2 to N-3) the progressively higher likelihood that the cessation of brain function is irreversible, even if oxygenated circulation can be re-established (either spontaneously or through intervention). The precise time period for the complete cessation of brain function to be non-resuscitable (through intervention) is unresolved.
Operational definition of human death
After reviewing the historical taxonomy and definitions of death, and the neurologic and circulatory sequences in the dying process that had been previously discussed and refined, participants came to consensus on an operational definition of human death, that is, a practical and quantifiable description of the state of human death based on measurable and observable biomedical standards. Forum participants agreed on the following operational definition of death:
Death is the permanent loss of capacity for consciousness and all brainstem functions. This may result from permanent cessation of circulation or catastrophic brain injury. In the context of death determination, ‘permanent’ refers to loss of function that cannot resume spontaneously and will not be restored through intervention [22].
Participants supported avoiding use of anatomically based terms such as “brain death” or “cardiac death” that erroneously imply the death of that organ and confuse the general public, health professionals, and policymakers (organisms die, while organs cease functioning). Our operational definition is based on the cessation of function (the primary and fundamental purpose of an organ that can be assessed by observation and examination and is necessary for sustained life) rather than activities (physiologic properties of cells and groups of cells that can be measured by laboratory means). While the forum participants understood that the overwhelming majority of deaths in the world occur after circulation has ceased, and many occur outside health care settings, death determination must focus on the centrality of brain function. Death is a single phenomenon based on permanent cessation of brain function (loss of capacity for consciousness and brainstem reflexes), which occurs along two pathways: (1) permanent absence of circulation or (2) subsequent to a catastrophic brain injury, each discerned through a specific set of medical criteria and clinical and laboratory tests—two entrances, one end point.