Skip to main content

Advertisement

Log in

Physiologische Reaktionen im Interface zementfreier Implantate

Physiological reactions in the interface between cementless implants and bone

  • Leitthema
  • Published:
Die Orthopädie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Der Stellenwert der operativen Therapie von Patienten mit konservativ-therapierefraktärer Koxarthrose gewinnt bei einer alternden Bevölkerung mit steigendem Funktionsanspruch weiterhin zunehmend an Bedeutung.

Fragestellung

Was sind die physiologischen Reaktionen im Interface zwischen zementfreiem Implantat und Knochen?

Material und Methoden

Aufarbeitung von Grundlagenarbeiten, Expertenempfehlungen und Tiermodellen.

Ergebnisse

Implantatspezifische Oberflächenbeschichtungen aus Hydroxylapatit oder Titan können positive Effekte auf die Osteointegration haben. Die zusätzliche topische Applikation von Mediatoren kann die Osteointegration zukünftig positiv beeinflussen.

Schlussfolgerung

Die kurzfristige periimplantäre Knochenheilung nach Implantation, bzw. eine physiologische Knochenremodellierung der Knochen-Implantat-Grenzfläche sind entscheidend für die Sekundärstabilität des Implantates.

Abstract

Background

Surgical treatment of patients with osteoarthritis of the hip and persisting symptoms under conservative therapy has become increasingly important against the background of an aging population.

Objectives

What are the physiological reactions in the interface between cementless implants and bone?

Methods

The literature is reviewed, expert opinions and animal models are analyzed and discussed.

Results

Surface coating of implants with hydroxyapatite or titanium can have positive effects on osteointegration. Additional local application of mediators might be beneficial for osteointegration in the future.

Conclusion

Early peri-implant bone healing directly after implantation and late remodeling of the bone–implant interface are essential for secondary implant stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1

Abbreviations

BMP:

„Bone morphogenic protein“

GDF :

„Growth-and-differentiation“-Faktoren

HA :

Hydroxylapatit

M1 :

Proinflammatorische Makrophagen

M2 :

Antiinflammatorische Makrophagen

TGF :

„Tissue growth factor“

VEGF :

„Vascular endothelial growth factor“

XLPE :

„Cross-linked polyethylene“

Literatur

  1. Khanduja V (2017) Total hip arthroplasty in 2017—current concepts and recent advances. Indian J Orthop 51:357–358. https://doi.org/10.4103/ortho.IJOrtho_367_17

    Article  PubMed  PubMed Central  Google Scholar 

  2. Okafor L, Chen AF (2019) Patient satisfaction and total hip arthroplasty: a review. Arthroplasty 1:6. https://doi.org/10.1186/s42836-019-0007-3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Merola M, Affatato S (2019) Materials for hip prostheses: a review of wear and loading considerations. Materials 12:495. https://doi.org/10.3390/ma12030495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Fröschen FS, Randau TM, Hischebeth GTR, Gravius N, Gravius S, Walter SG (2020) Mid-term results after revision total hip arthroplasty with custom-made acetabular implants in patients with Paprosky III acetabular bone loss. Arch Orthop Trauma Surg 140:263–273. https://doi.org/10.1007/s00402-019-03318-0

    Article  PubMed  Google Scholar 

  5. McKee GK (1982) Total hip replacement—past, present and future. Biomaterials 3:130–135. https://doi.org/10.1016/0142-9612(82)90001-1

    Article  CAS  PubMed  Google Scholar 

  6. Venkatraman V, Wong MK, Shalita C, Parente B, Lad SP (2020) Cobalt-induced toxicity and spasticity secondary to hip arthroplasty: case report and review of the literature. Cureus. https://doi.org/10.7759/cureus.12368

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tateiwa T, Clarke IC, Williams PA, Garino J, Manaka M, Shishido T, Yamamoto K, Imakiire A (2008) Ceramic total hip arthroplasty in the United States: safety and risk issues revisited. Am J Orthop 37:E26–31

    PubMed  Google Scholar 

  8. Tsikandylakis G, Overgaard S, Zagra L, Kärrholm J (2020) Global diversity in bearings in primary THA. EFORT Open Rev 5:763–775. https://doi.org/10.1302/2058-5241.5.200002

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fang Y, Shang X (2021) Comparison of ceramic-on-ceramic vs. ceramic-on-polyethylene for primary total hip arthroplasty: a meta-analysis of 15 randomized trials. Front Surg 8:751121. https://doi.org/10.3389/fsurg.2021.751121

    Article  PubMed  PubMed Central  Google Scholar 

  10. Salipas A, Poole AS, Teeter MG, Somerville LE, Naudie DD, McCalden RW (2022) A ten-year radiostereometric analysis of polyethylene wear between oxidized zirconium and cobalt chrome articulations in total hip arthroplasty. J Arthroplasty 37:S692–S696. https://doi.org/10.1016/j.arth.2022.02.099

    Article  PubMed  Google Scholar 

  11. Holzwarth U, Thomas P, Kachler W, Göske J, Schuh A (2005) Metallkundliche Differenzierung von Kobalt-Chrom-Legierungen für Implantate. Orthopäde 34:1046–1051. https://doi.org/10.1007/s00132-005-0849-y

    Article  CAS  PubMed  Google Scholar 

  12. Grzeskowiak RM, Schumacher J, Dhar MS, Harper DP, Mulon P‑Y, Anderson DE (2020) Bone and cartilage interfaces with orthopedic implants: a literature review. Front Surg 7:601244. https://doi.org/10.3389/fsurg.2020.601244

    Article  PubMed  PubMed Central  Google Scholar 

  13. Thomas P, Schuh A, Ring J, Thomsen M (2008) Orthopädisch-chirurgische Implantate und Allergien: Gemeinsame Stellungnahme des Arbeitskreises Implantatallergie (AK 20) der Deutschen Gesellschaft für Orthopädie und Orthopädische Chirurgie (DGOOC), der Deutschen Kontaktallergie Gruppe (DKG) und der Deutschen Gesellschaft für Allergologie und Klinische Immunologie (DGAKI). Hautarzt 59:220–229. https://doi.org/10.1007/s00105-007-1453-3

    Article  CAS  PubMed  Google Scholar 

  14. Prasad K, Bazaka O, Chua M, Rochford M, Fedrick L, Spoor J, Symes R, Tieppo M, Collins C, Cao A, Markwell D, Ostrikov K, Bazaka K (2017) Metallic biomaterials: current challenges and opportunities. materials 10:884. https://doi.org/10.3390/ma10080884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Eisenbarth E, Velten D, Schenk-Meuser K, Linez P, Biehl V, Duschner H, Breme J, Hildebrand H (2002) Interactions between cells and titanium surfaces. Biomol Eng 19:243–249. https://doi.org/10.1016/S1389-0344(02)00032-1

    Article  CAS  PubMed  Google Scholar 

  16. Saini M (2015) Implant biomaterials: a comprehensive review. World J Clin Cases 3:52. https://doi.org/10.12998/wjcc.v3.i1.52

    Article  PubMed  PubMed Central  Google Scholar 

  17. Lethaus B, Kessler P, Boeckman R, Poort LJ, Tolba R (2010) Reconstruction of a maxillary defect with a fibula graft and titanium mesh using CAD/CAM techniques. Head Face Med 6:16. https://doi.org/10.1186/1746-160X-6-16

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pilliar RM (2005) Cementless implant fixation—toward improved reliability. Orthop Clin North Am 36:113–119. https://doi.org/10.1016/j.ocl.2004.08.001

    Article  PubMed  Google Scholar 

  19. Søballe K, Overgaard S, Hansen ES, Brokstedt-Rasmussen H, Lind M, Bünger C (1999) A review of ceramic coatings for implant fixation. J Long Term Eff Med Implants 9:131–151

    PubMed  Google Scholar 

  20. Park S, Kim G, Jeon YC, Koh Y, Kim W (2009) 3D polycaprolactone scaffolds with controlled pore structure using a rapid prototyping system. J Mater Sci Mater Med 20:229–234. https://doi.org/10.1007/s10856-008-3573-4

    Article  CAS  PubMed  Google Scholar 

  21. Fu Q, Rahaman MN, Bal BS, Brown RF (2009) In vitro cellular response to hydroxyapatite scaffolds with oriented pore architectures. Mater Sci Eng C 29:2147–2153. https://doi.org/10.1016/j.msec.2009.04.016

    Article  CAS  Google Scholar 

  22. Sartoretto SC, Alves ATNN, Resende RFB, Calasans-Maia J, Granjeiro JM, Calasans-Maia MD (2015) Early osseointegration driven by the surface chemistry and wettability of dental implants. J Appl Oral Sci 23:279–287. https://doi.org/10.1590/1678-775720140483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Levine BR, Sporer S, Poggie RA, Della Valle CJ, Jacobs JJ (2006) Experimental and clinical performance of porous tantalum in orthopedic surgery. Biomaterials 27:4671–4681. https://doi.org/10.1016/j.biomaterials.2006.04.041

    Article  CAS  PubMed  Google Scholar 

  24. Jeong J, Kim JH, Shim JH, Hwang NS, Heo CY (2019) Bioactive calcium phosphate materials and applications in bone regeneration. Biomater Res 23:4. https://doi.org/10.1186/s40824-018-0149-3

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhou W, Liu Z, Xu S, Hao P, Xu F, Sun A (2011) Long-term survivability of hydroxyapatite-coated implants: a meta-analysis: hydroxyapatite-coated dental implants. Oral Surg 4:2–7. https://doi.org/10.1111/j.1752-248X.2010.01112.x

    Article  Google Scholar 

  26. Kamitakahara M, Ohtsuki C, Miyazaki T (2008) Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition. J Biomater Appl 23:197–212. https://doi.org/10.1177/0885328208096798

    Article  CAS  PubMed  Google Scholar 

  27. Jang HL, Jin K, Lee J, Kim Y, Nahm SH, Hong KS, Nam KT (2014) Revisiting Whitlockite, the second most abundant biomineral in bone: nanocrystal synthesis in physiologically relevant conditions and biocompatibility evaluation. ACS Nano 8:634–641. https://doi.org/10.1021/nn405246h

    Article  CAS  PubMed  Google Scholar 

  28. Suzuki O, Imaizumi H, Kamakura S, Katagiri T (2008) Bone regeneration by synthetic octacalcium phosphate and its role in biological mineralization. Curr Med Chem 15:305–313. https://doi.org/10.2174/092986708783497283

    Article  CAS  PubMed  Google Scholar 

  29. Stroncek JD, Reichert WM (2008) Overview of wound healing in different tissue types. In: Reichert WM (Hrsg) Indwelling neural implants: strategies for contending with the in vivo environment. CRC Press/Taylor & Francis, Boca Raton (FL)

    Google Scholar 

  30. Kuzyk PRT, Schemitsch EH (2011) The basic science of peri-implant bone healing. Indian J Orthop 45:108–115. https://doi.org/10.4103/0019-5413.77129

    Article  PubMed  PubMed Central  Google Scholar 

  31. Kieswetter K, Schwartz Z, Dean DD, Boyan BD (1996) The role of implant surface characteristics in the healing of bone. Crit Rev Oral Biol Med 7:329–345. https://doi.org/10.1177/10454411960070040301

    Article  CAS  PubMed  Google Scholar 

  32. Gerstenfeld LC, Cullinane DM, Barnes GL, Graves DT, Einhorn TA (2003) Fracture healing as a post-natal developmental process: molecular, spatial, and temporal aspects of its regulation. J Cell Biochem 88:873–884. https://doi.org/10.1002/jcb.10435

    Article  CAS  PubMed  Google Scholar 

  33. Ogilvie CM, Lu C, Marcucio R, Lee M, Thompson Z, Hu D, Helms JA, Miclau T (2012) Vascular endothelial growth factor improves bone repair in a murine nonunion model. Iowa Orthop J 32:90–94

    PubMed  PubMed Central  Google Scholar 

  34. Liu J, Kang H, Lu J, Dai Y, Wang F (2021) Experimental study of the effects of hypoxia simulator on osteointegration of titanium prosthesis in osteoporotic rats. BMC Musculoskelet Disord 22:944. https://doi.org/10.1186/s12891-021-04777-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Meyer U, Joos U, Mythili J, Stamm T, Hohoff A, Fillies T, Stratmann U, Wiesmann HP (2004) Ultrastructural characterization of the implant/bone interface of immediately loaded dental implants. Biomaterials 25:1959–1967. https://doi.org/10.1016/j.biomaterials.2003.08.070

    Article  CAS  PubMed  Google Scholar 

  36. Puleo D (1999) Understanding and controlling the bone-implant interface. Biomaterials 20:2311–2321. https://doi.org/10.1016/S0142-9612(99)00160-X

    Article  CAS  PubMed  Google Scholar 

  37. Franchi M, Fini M, Martini D, Orsini E, Leonardi L, Ruggeri A, Giavaresi G, Ottani V (2005) Biological fixation of endosseous implants. Micron 36:665–671. https://doi.org/10.1016/j.micron.2005.05.010

    Article  CAS  PubMed  Google Scholar 

  38. Davies JE (2003) Understanding peri-implant endosseous healing. J Dent Educ 67:932–949

    Article  PubMed  Google Scholar 

  39. Zhang H, Lewis CG, Aronow MS, Gronowicz GA (2004) The effects of patient age on human osteoblasts’ response to Ti-6Al-4V implants in vitro. J Orthop Res 22:30–38. https://doi.org/10.1016/S0736-0266(03)00155-4

    Article  CAS  PubMed  Google Scholar 

  40. Rosenqvist R, Bylander B, Knutson K, Rydholm U, Rööser B, Egund N, Lidgren L (1986) Loosening of the porous coating of bicompartmental prostheses in patients with rheumatoid arthritis. J Bone Joint Surg Am 68:538–542. https://doi.org/10.2106/00004623-198668040-00009

    Article  CAS  PubMed  Google Scholar 

  41. Mombelli A, Cionca N (2006) Systemic diseases affecting osseointegration therapy. Clin Oral Implants Res 17:97–103. https://doi.org/10.1111/j.1600-0501.2006.01354.x

    Article  PubMed  Google Scholar 

  42. Wong MM, Rao LG, Ly H, Hamilton L, Ish-Shalom S, Sturtridge W, Tong J, McBroom R, Josse RG, Murray TM (1994) In vitro study of osteoblastic cells from patients with idiopathic osteoporosis and comparison with cells from non-osteoporotic controls. Osteoporos Int 4:21–31. https://doi.org/10.1007/BF02352257

    Article  CAS  PubMed  Google Scholar 

  43. Clark D, Nakamura M, Miclau T, Marcucio R (2017) Effects of aging on fracture healing. Curr Osteoporos Rep 15:601–608. https://doi.org/10.1007/s11914-017-0413-9

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tanner M, Vlachopoulos W, Findeisen S, Miska M, Ober J, Hagelskamp S, Schmidmaier G, Haubruck P (2019) Does age influence the outcome of lower limb non-union treatment? A matched pair analysis. J Clin Med 8:1276. https://doi.org/10.3390/jcm8091276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Föger-Samwald U, Dovjak P, Azizi-Semrad U, Kerschan-Schindl K, Pietschmann P (2020) Osteoporosis: pathophysiology and therapeutic options. EXCLI J. https://doi.org/10.17179/EXCLI2020-2591

    Article  PubMed  PubMed Central  Google Scholar 

  46. Franceschi C, Bonafè M, Valensin S, Olivieri F, De Luca M, Ottaviani E, De Benedictis G (2006) Inflamm-aging: an evolutionary perspective on Immunosenescence. Ann N Y Acad Sci 908:244–254. https://doi.org/10.1111/j.1749-6632.2000.tb06651.x

    Article  Google Scholar 

  47. Marco F, Milena F, Gianluca G, Vittoria O (2005) Peri-implant osteogenesis in health and osteoporosis. Micron 36:630–644. https://doi.org/10.1016/j.micron.2005.07.008

    Article  CAS  PubMed  Google Scholar 

  48. Janssen D, Srinivasan P, Scheerlinck T, Verdonschot N (2012) Effect of cementing technique and cement type on thermal necrosis in hip resurfacing arthroplasty—a numerical study: thermal necrosis in hip resurfacing. J Orthop Res 30:364–370. https://doi.org/10.1002/jor.21512

    Article  CAS  PubMed  Google Scholar 

  49. Stańczyk M, van Rietbergen B (2004) Thermal analysis of bone cement polymerisation at the cement-bone interface. J Biomech 37:1803–1810. https://doi.org/10.1016/j.jbiomech.2004.03.002

    Article  PubMed  Google Scholar 

  50. Piolanti N, Neri E, Bonicoli E, Parchi PD, Marchetti S, Manca M, Bonini L, Banci L, Scaglione M (2021) Use of a plasma-sprayed titanium-hydroxyapatite femoral stem in hip arthroplasty in patients older than 70 years. Is cementless fixation a reliable option in the elderly? J Clin Med 10:4735. https://doi.org/10.3390/jcm10204735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Levin M, Spiro R, Jain H, Falk MM (2022) Effects of titanium implant surface topology on bone cell attachment and proliferation in vitro. Med Devices 15:103–119. https://doi.org/10.2147/MDER.S360297

    Article  Google Scholar 

  52. Bauer TW, Stulberg BN, Ming J, Geesink RGT (1993) Uncemented acetabular components. J Arthroplasty 8:167–177. https://doi.org/10.1016/S0883-5403(09)80010-7

    Article  CAS  PubMed  Google Scholar 

  53. Walsh WR, Pelletier MH, Bertollo N, Lovric V, Wang T, Morberg P, Parr WCH, Bergadano D (2020) Bone ongrowth and mechanical fixation of implants in cortical and cancellous bone. J Orthop Surg 15:177. https://doi.org/10.1186/s13018-020-01696-5

    Article  Google Scholar 

  54. Kuroda Y, Hashimoto S, Hayashi S, Nakano N, Fujishiro T, Hiranaka T, Kuroda R, Matsumoto T (2022) Fully hydroxyapatite-coated compaction broached and triple-tapered stem may reduce the risk of stress shielding after primary total hip arthroplasty. Arch Orthop Trauma Surg. https://doi.org/10.1007/s00402-021-04308-x

    Article  PubMed  Google Scholar 

  55. Vu AA, Robertson SF, Ke D, Bandyopadhyay A, Bose S (2019) Mechanical and biological properties of ZnO, SiO2, and Ag2O doped plasma sprayed hydroxyapatite coating for orthopaedic and dental applications. Acta Biomater 92:325–335. https://doi.org/10.1016/j.actbio.2019.05.020

    Article  CAS  PubMed  Google Scholar 

  56. Roy M, Fielding GA, Beyenal H, Bandyopadhyay A, Bose S (2012) Mechanical, in vitro antimicrobial, and biological properties of plasma-sprayed silver-doped hydroxyapatite coating. ACS Appl Mater Interfaces 4:1341–1349. https://doi.org/10.1021/am201610q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Fielding GA, Roy M, Bandyopadhyay A, Bose S (2012) Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings. Acta Biomater 8:3144–3152. https://doi.org/10.1016/j.actbio.2012.04.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Geng Z, Wang R, Zhuo X, Li Z, Huang Y, Ma L, Cui Z, Zhu S, Liang Y, Liu Y, Bao H, Li X, Huo Q, Liu Z, Yang X (2017) Incorporation of silver and strontium in hydroxyapatite coating on titanium surface for enhanced antibacterial and biological properties. Mater Sci Eng C 71:852–861. https://doi.org/10.1016/j.msec.2016.10.079

    Article  CAS  Google Scholar 

  59. Zhang Y, Zhu Y, Lu D, Dong W, Bi W, Feng X, Wen L, Sun H, Qi M (2021) Evaluation of osteogenic and antibacterial properties of strontium/silver-containing porous TiO 2 coatings prepared by micro-arc oxidation. J Biomed Mater Res Part B Appl Biomater 109:505–516. https://doi.org/10.1002/jbm.b.34719

    Article  CAS  Google Scholar 

  60. Morimoto T, Hirata H, Eto S, Hashimoto A, Kii S, Kobayashi T, Tsukamoto M, Yoshihara T, Toda Y, Mawatari M (2022) Development of silver-containing hydroxyapatite-coated antimicrobial implants for orthopaedic and spinal surgery. Medicina 58:519. https://doi.org/10.3390/medicina58040519

    Article  PubMed  PubMed Central  Google Scholar 

  61. Li Y, Wang W, Han J, Li Z, Wang Q, Lin X, Ge K, Zhou G (2022) Synthesis of silver- and strontium-substituted hydroxyapatite with combined osteogenic and antibacterial activities. Biol Trace Elem Res 200:931–942. https://doi.org/10.1007/s12011-021-02697-z

    Article  CAS  PubMed  Google Scholar 

  62. Clarke B (2008) Normal bone anatomy and physiology. Clin J Am Soc Nephrol 3:S131–S139. https://doi.org/10.2215/CJN.04151206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Brunski JB (1999) In vivo bone response to biomechanical loading at the bone/dental-implant interface. Adv Dent Res 13:99–119. https://doi.org/10.1177/08959374990130012301

    Article  CAS  PubMed  Google Scholar 

  64. Currey JD (2003) The many adaptations of bone. J Biomech 36:1487–1495. https://doi.org/10.1016/S0021-9290(03)00124-6

    Article  CAS  PubMed  Google Scholar 

  65. Frost HM (2000) The Utah paradigm of skeletal physiology: an overview of its insights for bone, cartilage and collagenous tissue organs. J Bone Miner Metab 18:305–316. https://doi.org/10.1007/s007740070001

    Article  CAS  PubMed  Google Scholar 

  66. Raghavendra S, Wood MC, Taylor TD (2005) Early wound healing around endosseous implants: a review of the literature. Int J Oral Maxillofac Implants 20:425–431

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Sebastian Fröschen.

Ethics declarations

Interessenkonflikt

F.S. Fröschen, D.C. Wirtz und F.A. Schildberg geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Additional information

figure qr

QR-Code scannen & Beitrag online lesen

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fröschen, F.S., Wirtz, D.C. & Schildberg, F.A. Physiologische Reaktionen im Interface zementfreier Implantate. Orthopädie 52, 178–185 (2023). https://doi.org/10.1007/s00132-023-04347-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-023-04347-9

Schlüsselwörter

Keywords

Navigation