Skip to main content

Advertisement

Log in

Standard- und Spezialinlays in primärer Hüftendoprothetik

Aktuelle Studien- und Umfrageergebnisse aus dem Endoprothesenregister Deutschland (EPRD)

Standard and special liner in primary hip arthroplasty

Current study and survey results from the German Arthroplasty Registry (EPRD)

  • Aktuelles aus dem Endoprothesenregister
  • Published:
Die Orthopädie Aims and scope Submit manuscript

Zusammenfassung

Hintergrund

Die Instabilität ist eine der Hauptursachen für Revisionen von Hüftendoprothesen. Durch spezielle Polyethyleninlays soll die Gelenkstabilität des Hüftgelenkersatzes verbessert werden. Im Juli 2022 wurde im The Bone & Joint Journal eine vergleichende Studie mit Daten des Endoprothesenregister Deutschland (EPRD) veröffentlicht. Dabei wurde die Häufigkeit von Revisionsoperationen unter Verwendung von Standardinlays gegenüber sogenannten Spezialinlays bei primären, zementfreien Hüfttotalendoprothesen untersucht. Aufgrund der Ergebnisse der Studie erfolgte anschließend eine deutschlandweite Umfrage, um die Indikation und Anwendung dieser speziellen Inlays zu verstehen.

Methodik

Eingeschlossen wurden 151.096 primäre, elektive, zementfreie Hüfttotalendoprothesen, die von November 2012 bis November 2020 im EPRD erfasst wurden. In einer „Competing-risk“-Analyse wurden die kumulativen Inzidenzen für den Endpunkt Revision aufgrund mechanischer Komplikation für Standard-Polyethyleninlays im Vergleich zu überhöhten („lipped“), angulierten („angulated“), lateralisierten („offset“) und kombiniert angulierten/lateralisierten („angulated/offset“) Polyethyleninlays berechnet. Einflussvariablen wurden mit einer multivariaten Cox-Regression identifiziert. In der nachfolgenden Online-Umfrage zum Nutzungsverhalten von überhöhten Inlays schlossen 237 von 789 angeschriebenen Kliniken einen Fragebogen ab.

Ergebnisse und Schlussfolgerung

Nur lateralisierte Inlays waren in der Analyse den Standardinlays bezüglich mechanischer Komplikationen überlegen. Für die anderen analysierten Inlaytypen konnte dies nicht gezeigt werden. Auch wenn lateralisierte Inlays eine geringere kurz- bis mittelfristigere Wahrscheinlichkeit einer mechanischen Komplikation zeigen, sollte die durch die Lateralisierung des Drehzentrums resultierende erhöhte Hüftkontaktkraft berücksichtigt werden. Langzeitergebnisse sind daher abzuwarten. In der Umfrage zeigte sich, dass überhöhte Inlays überwiegend bei Anwendung eines hinteren Zugangs eingesetzt werden, jedoch überwiegend die biomechanisch ungünstigere Positionierung der Überhöhung im posterior-superioren Quadranten genutzt wird. Bei Verwendung eines überhöhten Inlays sollte die posterior-inferiore Position der Überhöhung beim hinteren Zugang genutzt werden.

Abstract

Background

Instability constitutes the main reason for revision hip arthroplasties. Modified polyethylene liners are designed to improve the stability of a hip replacement. In July 2022 The Bone & Joint Journal published a study with data of the German Arthroplasty Registry (EPRD). The study investigated mechanical failure of standard and modified liner designs in primary, cementless total hip arthroplasty. Following the study, the EPRD conducted a survey of German clinics to research the utilization of lipped liners in primary total hip replacement.

Methods

The liner study included 151,096 primary, elective, cementless total hip arthroplasties. Data from November 2012 to November 2020 were obtained from the EPRD. Standard polyethylene liners were compared with lipped, angulated, offset and angulated/offset inlays. Cumulative incidences for endpoint revision due to mechanical complication were calculated with a competing risk analysis. The influence of other variables was investigated with a multivariate Cox regression. In the following online survey, 237 out of 789 hospitals completed a form.

Results and conclusion

In our analysis, only offset liners were, compared to standard liners, associated with a reduced risk of mechanical failure in a short to medium follow up. However, the resultant joint reaction force is increased with offset liners due to the lateralization of the hip center of rotation. Thus, the long-term performance of offset liners needs to be observed. Our survey indicated that lipped liners were implanted more often if the posterior approach was used. Moreover, lipped liners were mostly positioned with the elevated rim in the biomechanically less optimal posterior-superior quadrant. To improve stability it is suggested to position the elevated rim in the posterior-inferior quadrant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8

Abbreviations

AOANJRR:

Australian Orthopaedic Association National Joint Replacement Registry

ARR :

Absolute Risikoreduktion

ASA :

American Society of Anesthesiologists

BMI :

Body-Mass-Index

EPRD :

Endoprothesenregister Deutschland

ICD :

International Statistical Classification of Diseases and Related Health Problems

KIR :

Kumulative Inzidenz zum Zeitpunkt 7 Jahre

NNT :

Number Needed to Treat

ROM :

„Range of motion“

SAR :

Swedish Arthroplasty Register

SIAI :

Spina iliaca anterior inferior

Literatur

  1. American Academy of Orthopaedic Surgeons (AAOS) American joint replacement registry (AJRR): 2020 annual report. https://www.aaos.org/registries/publications/ajrr-annual-report/. Zugegriffen: 26. Juli 2021

  2. Antoniou J, Silotch C, Epure LL et al (2022) Elective total hip arthroplasties in nonagenarians-age does matter: a national surgical quality improvement program study. J Arthroplasty 37:S524–S529. https://doi.org/10.1016/j.arth.2022.01.067

    Article  PubMed  Google Scholar 

  3. Archibeck MJ, Cummins T, Junick DW, White RE (2009) Acetabular loosening using an extended offset polyethylene liner. Clin Orthop 467:188–193. https://doi.org/10.1007/s11999-008-0479-x

    Article  PubMed  Google Scholar 

  4. Australian Orthopaedic Association National Joint Replacement Registry (AOANJRR) Hip, knee & shoulder arthroplasty: 2020 annual report. https://aoanjrr.sahmri.com/annual-reports-2020. Zugegriffen: 26. Juli 2021

  5. Bauze A, Agrawal S, Cuthbert A, de Steiger R (2019) Are hooded, crosslinked polyethylene liners associated with a reduced risk of revision after THA? Clin Orthop 477:1315–1321. https://doi.org/10.1097/CORR.0000000000000710

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bonnin MP, Archbold PHA, Basiglini L et al (2012) Do we medialise the hip centre of rotation in total hip arthroplasty? Influence of acetabular offset and surgical technique. Hip Int J Clin Exp Res Hip Pathol Ther 22:371–378. https://doi.org/10.5301/HIP.2012.9350

    Article  Google Scholar 

  7. Brazier BG, Mesko JW (2018) Superior rim fracture of a vitamin E‑infused highly cross-linked polyethylene (HXLPE) liner leading to total hip arthroplasty revision. Arthroplast Today 4:287–290. https://doi.org/10.1016/j.artd.2018.02.001

    Article  PubMed  PubMed Central  Google Scholar 

  8. Burke WV, Orishimo KF, McAuley JP, Engh CA (2006) Midterm radiographic comparison of cementless acetabular shells containing lateralized and nonlateralized liners. J Arthroplasty 21:1099–1104. https://doi.org/10.1016/j.arth.2006.01.029

    Article  PubMed  Google Scholar 

  9. Burroughs BR, Hallstrom B, Golladay GJ et al (2005) Range of motion and stability in total hip arthroplasty with 28-, 32-, 38-, and 44-mm femoral head sizes. J Arthroplasty 20:11–19. https://doi.org/10.1016/j.arth.2004.07.008

    Article  PubMed  Google Scholar 

  10. Chapman RM, Van Citters DW, Chapman D, Dalury DF (2019) Higher offset cross-linked polyethylene acetabular liners: is wear a significant clinical concern? Hip Int J Clin Exp Res Hip Pathol Ther 29:652–659. https://doi.org/10.1177/1120700018815339

    Article  Google Scholar 

  11. Cobb TK, Morrey BF, Ilstrup DM (1996) The elevated-rim acetabular liner in total hip arthroplasty: relationship to postoperative dislocation. J Bone Joint Surg Am 78:80–86. https://doi.org/10.2106/00004623-199601000-00011

    Article  CAS  PubMed  Google Scholar 

  12. Dastane M, Dorr LD, Tarwala R, Wan Z (2011) Hip offset in total hip arthroplasty: quantitative measurement with navigation. Clin Orthop 469:429–436. https://doi.org/10.1007/s11999-010-1554-7

    Article  PubMed  Google Scholar 

  13. Davis ET, Pagkalos J, Kopjar B (2020) Polyethylene manufacturing characteristics have a major effect on the risk of revision surgery in cementless and hybrid total hip arthroplasties. Bone Joint J 102-B:90–101. https://doi.org/10.1302/0301-620X.102B1.BJJ-2019-0779.R1

    Article  PubMed  Google Scholar 

  14. Debbi EM, Quevedo González FJ, Jerabek SA et al (2022) Three-dimensional functional impingement in total hip arthroplasty: a biomechanical analysis. J Arthroplasty 37:S678–S684. https://doi.org/10.1016/j.arth.2022.02.112

    Article  PubMed  Google Scholar 

  15. Divecha HM, O’Neill TW, Lunt M, Board TN (2021) The effect of uncemented acetabular liner geometry and lip size on the risk of revision for instability or loosening : a study on 202,511 primary hip arthroplasties from the National Joint Registry. Bone Joint J 103-B:1774–1782. https://doi.org/10.1302/0301-620X.103B12.BJJ-2021-0471.R1

    Article  PubMed  Google Scholar 

  16. Dumbleton JH, Manley MT, Edidin AA (2002) A literature review of the association between wear rate and osteolysis in total hip arthroplasty. J Arthroplasty 17:649–661. https://doi.org/10.1054/arth.2002.33664

    Article  PubMed  Google Scholar 

  17. EPRD Deutsche Endoprothesenregister (2021) The German arthroplasty registry—annual report 2020. EPRD Deutsche Endoprothesenregister

    Google Scholar 

  18. Falez F, Papalia M, Favetti F et al (2017) Total hip arthroplasty instability in Italy. Int Orthop 41:635–644. https://doi.org/10.1007/s00264-016-3345-6

    Article  PubMed  Google Scholar 

  19. Furmanski J, Anderson M, Bal S et al (2009) Clinical fracture of cross-linked UHMWPE acetabular liners. Biomaterials 30:5572–5582. https://doi.org/10.1016/j.biomaterials.2009.07.013

    Article  CAS  PubMed  Google Scholar 

  20. Garbuz DS, Masri BA, Duncan CP et al (2012) The Frank Stinchfield Award: dislocation in revision THA: do large heads (36 and 40 mm) result in reduced dislocation rates in a randomized clinical trial? Clin Orthop 470:351–356. https://doi.org/10.1007/s11999-011-2146-x

    Article  PubMed  Google Scholar 

  21. Gerhardt DMJM, Sanders RJM, de Visser E, van Susante JLC (2014) Excessive polyethylene wear and acetabular bone defects from standard use of a hooded acetabular insert in total hip arthroplasty. Int Orthop 38:1585–1590. https://doi.org/10.1007/s00264-014-2333-y

    Article  PubMed  PubMed Central  Google Scholar 

  22. Giori NJ (2003) Offset acetabular components introduce torsion on the implant and may increase the risk of fixation failure. J Arthroplasty 18:89–91. https://doi.org/10.1054/arth.2003.50018

    Article  PubMed  Google Scholar 

  23. Glyn-Jones S, Thomas GER, Garfjeld-Roberts P et al (2015) The John Charnley award: highly crosslinked polyethylene in total hip Arthroplasty decreases long-term wear: a double-blind randomized trial. Clin Orthop 473:432–438. https://doi.org/10.1007/s11999-014-3735-2

    Article  PubMed  Google Scholar 

  24. Gray CF, Moore RE, Lee G‑C (2012) Spontaneous dissociation of offset, face-changing polyethylene liners from the acetabular shell: a report of four cases. J Bone Joint Surg Am 94:841–845. https://doi.org/10.2106/JBJS.K.00506

    Article  PubMed  Google Scholar 

  25. Hau R, Hammeschlag J, Law C, Wang KK (2018) Optimal position of lipped acetabular liners to improve stability in total hip arthroplasty—an intraoperative in vivo study. J Orthop Surg 13:289. https://doi.org/10.1186/s13018-018-1000-1

    Article  Google Scholar 

  26. Huff DN, Myers CA, Rullkoetter PJ (2020) Impact of alignment and kinematic variation on resistive moment and dislocation propensity for THA with lipped and neutral liners. Biomech Model Mechanobiol 19:1297–1307. https://doi.org/10.1007/s10237-020-01359-8

    Article  PubMed  Google Scholar 

  27. Johnson AJ, Loving L, Herrera L et al (2014) Short-term wear evaluation of thin acetabular liners on 36-mm femoral heads. Clin Orthop 472:624–629. https://doi.org/10.1007/s11999-013-3153-x

    Article  PubMed  Google Scholar 

  28. Jolles BM, Bogoch ER (2006) Posterior versus lateral surgical approach for total hip arthroplasty in adults with osteoarthritis. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD003828.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  29. Kamada K, Takahashi Y, Tateiwa T et al (2020) Influence of liner offset and locking mechanism on fatigue durability in highly cross-linked polyethylene total hip prostheses. J Biomed Mater Res Part B Appl Biomater 108:1993–2004. https://doi.org/10.1002/jbm.b.34540

    Article  CAS  Google Scholar 

  30. Kinkel S, Wollmerstedt N, Kleinhans JA et al (2009) Patient activity after total hip arthroplasty declines with advancing age. Clin Orthop 467:2053–2058. https://doi.org/10.1007/s11999-009-0756-3

    Article  PubMed  PubMed Central  Google Scholar 

  31. Krull P, Steinbrück A, Grimberg AW et al (2022) Modified acetabular component liner designs are not superior to standard liners at reducing the risk of revision. Bone Joint J 104-B:801–810. https://doi.org/10.1302/0301-620X.104B7.BJJ-2021-1791.R1

    Article  PubMed  Google Scholar 

  32. Krushell RJ, Burke DW, Harris WH (1991) Elevated-rim acetabular components. Effect on range of motion and stability in total hip arthroplasty. J Arthroplasty 6(Suppl):S53–S58

    Article  PubMed  Google Scholar 

  33. Kunze KN, Premkumar A, Bovonratwet P, Sculco PK (2021) Acetabular component and liner selection for the prevention of dislocation after primary total hip arthroplasty. JBJS Rev. https://doi.org/10.2106/JBJS.RVW.21.00148

    Article  PubMed  Google Scholar 

  34. Kurtz SM, Edidin AA, Bartel DL (1997) The role of backside polishing, cup angle, and polyethylene thickness on the contact stresses in metal-backed acetabular components. J Biomech 30:639–642. https://doi.org/10.1016/S0021-9290(96)00181-9

    Article  CAS  PubMed  Google Scholar 

  35. Kurtz SM, Kocagöz SB, Hanzlik JA et al (2013) Do ceramic femoral heads reduce taper fretting corrosion in hip arthroplasty? A retrieval study. Clin Orthop 471:3270–3282. https://doi.org/10.1007/s11999-013-3096-2

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lazennec J‑Y, Boyer P, Gorin M et al (2011) Acetabular anteversion with CT in supine, simulated standing, and sitting positions in a THA patient population. Clin Orthop 469:1103–1109. https://doi.org/10.1007/s11999-010-1732-7

    Article  PubMed  Google Scholar 

  37. Mahmood SS, Mukka SS, Crnalic S et al (2016) Association between changes in global femoral offset after total hip arthroplasty and function, quality of life, and abductor muscle strength. A prospective cohort study of 222 patients. Acta Orthop 87:36–41. https://doi.org/10.3109/17453674.2015.1091955

    Article  PubMed  Google Scholar 

  38. Marchetti E, Krantz N, Berton C et al (2011) Component impingement in total hip arthroplasty: frequency and risk factors. A continuous retrieval analysis series of 416 cup. Orthop Traumatol Surg Res 97:127–133. https://doi.org/10.1016/j.otsr.2010.12.004

    Article  CAS  PubMed  Google Scholar 

  39. Meermans G, Doorn JV, Kats J‑J (2016) Restoration of the centre of rotation in primary total hip arthroplasty. Bone Joint J 98-B:1597–1603. https://doi.org/10.1302/0301-620X.98B12.BJJ-2016-0345.R1

    Article  CAS  PubMed  Google Scholar 

  40. Merle C, Innmann MM, Waldstein W et al (2019) High variability of acetabular offset in primary hip osteoarthritis influences acetabular reaming—A computed tomography-based anatomic study. J Arthroplasty 34:1808–1814. https://doi.org/10.1016/j.arth.2019.03.065

    Article  PubMed  Google Scholar 

  41. Murray DW (1993) The definition and measurement of acetabular orientation. J Bone Joint Surg Br 75:228–232. https://doi.org/10.1302/0301-620X.75B2.8444942

    Article  CAS  PubMed  Google Scholar 

  42. National Joint Registry (NJR) of England, Wales, Northern Ireland, the Isle of Man and the States of Guernsey NJR 17th Annual Report 2020. https://reports.njrcentre.org.uk/. Zugegriffen: 26. Juli 2021

  43. Ravi B, Jenkinson R, Austin PC et al (2014) Relation between surgeon volume and risk of complications after total hip arthroplasty: propensity score matched cohort study. BMJ 348:g3284. https://doi.org/10.1136/bmj.g3284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Shen C, Tang Z‑H, Hu J‑Z et al (2014) Does cross-linked polyethylene decrease the revision rate of total hip arthroplasty compared with conventional polyethylene? A meta-analysis. Orthop Traumatol Surg Res 100:745–750. https://doi.org/10.1016/j.otsr.2014.07.015

    Article  CAS  PubMed  Google Scholar 

  45. Shon WY, Baldini T, Peterson MG et al (2005) Impingement in total hip arthroplasty a study of retrieved acetabular components. J Arthroplasty 20:427–435. https://doi.org/10.1016/j.arth.2004.09.058

    Article  PubMed  Google Scholar 

  46. Steinbrück A, Grimberg A, Melsheimer O, Jansson V (2020) Einfluss der institutionellen Erfahrung auf die Ergebnisse in Hüft- und Knietotalendoprothetik: Eine Analyse aus dem Endoprothesenregister Deutschland (EPRD). Orthopäde 49:808–814. https://doi.org/10.1007/s00132-020-03963-z

    Article  PubMed  Google Scholar 

  47. Stinchfield FE, Eftekhar N (2006) THE CLASSIC: dislocation and instability complicating low friction arthroplasty of the hip joint. Clin Orthop Relat Res 447:4–8. https://doi.org/10.1097/01.blo.0000218753.04687.80

    Article  Google Scholar 

  48. The Swedish Hip Arthroplasty Register (Svenska höftprotesregistret) (2020) Annual report 2020. https://shpr.registercentrum.se/in-english/annual-reports/p/rkeyyeElz. Zugegriffen: 26. Juli 2021

  49. van Walraven C, Austin PC, Jennings A et al (2009) A modification of the Elixhauser comorbidity measures into a point system for hospital death using administrative data. Med Care 47:626–633. https://doi.org/10.1097/MLR.0b013e31819432e5

    Article  PubMed  Google Scholar 

  50. Wan Z, Dorr LD (1996) Natural history of femoral focal osteolysis with proximal ingrowth smooth stem implant. J Arthroplasty 11:718–725. https://doi.org/10.1016/s0883-5403(96)80011-8

    Article  CAS  PubMed  Google Scholar 

  51. Wera GD, Ting NT, Moric M et al (2012) Classification and management of the unstable total hip arthroplasty. J Arthroplasty 27:710–715. https://doi.org/10.1016/j.arth.2011.09.010

    Article  PubMed  Google Scholar 

  52. Worlicek M, Messmer B, Grifka J et al (2020) Restoration of leg length and offset correlates with trochanteric pain syndrome in total hip arthroplasty. Sci Rep 10:7107. https://doi.org/10.1038/s41598-020-62531-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wyatt MC, Whitehouse MR, Kieser DC et al (2020) Are lipped polyethylene liners associated with increased revision rates in patients with uncemented acetabular components? An observational cohort study. Clin Orthop 478:581–589. https://doi.org/10.1097/CORR.0000000000001039

    Article  PubMed  Google Scholar 

  54. Yang X‑T, Huang H‑F, Sun L et al (2020) Direct anterior approach versus posterolateral approach in total hip arthroplasty: a systematic review and meta-analysis of randomized controlled studies. Orthop Surg 12:1065–1073. https://doi.org/10.1111/os.12669

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Krull.

Ethics declarations

Interessenkonflikt

A. Steinbrück gibt folgende Interessenkonflikte an: Beratungshonorare für Präsentationen und Lernzentren von Johnson & Johnson Depuy; wissenschaftlicher Studienkoordinator des Endoprothesenregister Deutschland (Reisekostenerstattung). A.W. Grimberg: Chief Medical Officer (CMO) des Endoprothesenregisters Deutschland (EPRD). M.M. Morlock: Beratungshonorare von DePuy Synthes und Zimmer-Biomet; Honorare für Vorträge, Präsentationen, Manuskripterstellung oder Bildungsveranstaltungen von DePuy Synthes und Deutsche Gesellschaft für Endoprothetik (AE); Zahlungen für Expertenaussagen von Zimmer-Biomet; Forschungsunterstützung von DePuy Synthes und Essity (Zahlungen an TuTech); Tätigkeit bei Trauma und Berufskrankheit. C. Perka: Beratertätigkeiten DePuy/Synthes, Zimmer, Link, Smith&Nephew; Reisekostenerstattung: BJJ; Honorare von DePuy/Synthes, Smith&Nephew und Zimmer. P. Krull und O. Melsheimer geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autor/-innen keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Additional information

figure qr

Zusatzmaterial online – bitte QR-Code scannen

Supplementary Information

132_2022_4333_MOESM1_ESM.pdf

Aufstellung der Ergebnisse einer anonymen Online-Umfrage zur Häufigkeit der Verwendung und Positionierung überhöhter Inlays sowie zum operativen Zugang und zur Positionskontrolle der Implantate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krull, P., Steinbrück, A., Grimberg, A.W. et al. Standard- und Spezialinlays in primärer Hüftendoprothetik. Orthopädie 52, 222–232 (2023). https://doi.org/10.1007/s00132-022-04333-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-022-04333-7

Schlüsselwörter

Keywords

Navigation