Skip to main content

Advertisement

Log in

Interrater reliability of three-dimensional reconstruction of the spine

Low-dose stereoradiography for evaluating bracing in adolescent idiopathic scoliosis

Interrater Reliabilität der dreidimensionalen Rekonstruktion der Wirbelsäule

Low-dose-Stereoradiographie zur Beurteilung der Korsetttherapie bei Adoleszenten mit idiopathischer Skoliose

  • Originalien
  • Published:
Der Orthopäde Aims and scope Submit manuscript

Abstract

Background

Bracing constitutes the mainstay treatment for mild scoliosis. The 3D reconstruction of the spine using low-dose stereoradiographic imaging (LSI) is increasingly being used to determine the true shape of the deformity and to assess the success of bracing.

Objective

The aim of the study was to validate the measurement of 3D spinopelvic parameters and vertebral rotation in the setting of bracing treatment via a reliability study conducted in adherence to the guidelines for reporting reliability and agreement studies (GRRAS).

Material and methods

Full spine stereoradiographs of patients with adolescent idiopathic scoliosis (AIS) who underwent Chêneau bracing were retrospectively analyzed. The 3D reconstruction was performed by two experienced operators in a blinded manner and randomized order. Rotation of every vertebra was computed in the coronal, sagittal and axial planes. Sagittal spinopelvic parameters were evaluated. All measurements were statistically compared to determine agreement of the measurement of brace correction using the intraclass correlation coefficient (ICC).

Results

In this study, 45 patients (81% females) aged 12.5 ± 2 years were included. The mean absolute difference was less than 3.5° for all measured angles, less than 4 mm for sagittal vertical axis (SVA) and less than 1.5 mm for lateral pelvic shift. The ICC was high for all parameters (ICC >0.81). Despite the overall high reliability, the reliability of axial rotation was lower in the upper and middle thoracic spine and the lower lumbar spine.

Conclusion

Brace wearing during full spine LSI acquisition does not affect spinal measurements. The LSI under bracing treatment produces reliable measurements of spinopelvic parameters as well as vertebral rotation. These reproducible 3D data enable spine surgeons to assess the true shape of the deformity, to quantify rotation of each vertebra and enhance the understanding of the efficacy of bracing treatment.

Zusammenfassung

Hintergrund

Die Korsetttherapie ist die Behandlung für milde idiopathische Skoliosen (AIS). Die 3‑D-Rekonstruktion der Wirbelsäule mithilfe der LSI („low-dose stereoradiographic imaging“) wird zunehmend verwendet, um die tatsächliche Form und das Ausmaß der Deformität zu bestimmen und den Erfolg der Korsetttherapie zu bewerten.

Fragestellung

Die Interraterreliabilität der Wirbelsäulen-3-D-Messungen wurde im Rahmen der Korsetttherapie bei Patienten mit AIS bestimmt. Diese Studie wurde in Anlehnung an die GRRAS (Guidelines for Reporting Reliability and Agreement Studies) durchgeführt.

Material und Methoden

Röntgen-Wirbelsäulenganzaufnahmen (EOS) von 45 AIS-Patienten, die einer Therapie mittels Chêneau-Korsett unterzogen wurden, konnten retrospektiv analysiert werden. 3‑D-Rekonstruktionen wurden durch 2 erfahrene Untersucher erstellt. Beide Untersucher waren in Bezug auf die Patientendaten verblindet, und die Messungen wurden in randomisierter Form durchgeführt. Die Rotation aller Wirbelkörper wurde in allen Ebenen (koronar, sagittal, axial) ermittelt. Die Parameter des sagittalen Profils und die spinopelvinen Parameter wurden gemessen. Alle Messungen wurden statistisch ausgewertet, um die Übereinstimmung (Interraterreliabilität und Reproduzierbarkeit) unter Anwendung des ICC zu bestimmen.

Ergebnisse

In diese Studie wurden 45 Patienten (81 % Frauen) im Alter von 12,5 ± 2 Jahren eingeschlossen. Die mittlere absolute Differenz betrug für alle gemessenen Winkel weniger als 3,5° und für SVA weniger als 4 mm und für den Beckenschiefstand weniger als 1,5 mm. Der ICC lag für alle Parameter hoch (ICC >0,81). Trotz der hohen Gesamt-Zuverlässigkeit war der ICC für die axiale Rotation in der oberen und mittleren Brustwirbelsäule sowie in der unteren Lendenwirbelsäule niedriger.

Schlussfolgerung

Das Korsett hat während der LSI-basierten Rekonstruktion der Wirbelsäule keinen negativen Einfluss auf die Messungen. Die LSI unter Korsetttherapie liefert zuverlässige Messungen der spinopelvinen Parameter sowie der Wirbelkörperrotation. Diese reproduzierbaren 3‑D-Daten ermöglichen es den Wirbelsäulenchirurgen, die tatsächliche Form der Deformität einzuschätzen, die Rotation jedes Wirbels zu quantifizieren und das Verständnis für die Effizienz der Korsettbehandlung zu verbessern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

3D:

Three-dimensional

AIS:

Adolescent idiopathic scoliosis

AVR:

Apical vertebral rotation

CT:

Computed tomography

GRRAS:

Guidelines for reporting reliability and agreement studies

ICC:

Intraclass correlation coefficient

LL:

Lumbar lordosis

LSI:

Low-dose stereoradiographic imaging

MRI:

Magnetic resonance imaging

PI:

Pelvic incidence

PT:

Pelvic tilt

SOSORT:

International Scientific Society on Scoliosis Orthopedic and Rehabilitation Treatment

SRS:

Scoliosis Research Society

SS:

Sacral slope

SSA:

Spinosacral angle

SVA:

Sagittal vertical axis

TK:

Thoracic kyphosis

TP:

Transverse plane

References

  1. Al-Aubaidi Z, Lebel D, Oudjhane K et al (2013) Three-dimensional imaging of the spine using the EOS system: is it reliable? A comparative study using computed tomography imaging. J Pediatr Orthop 22:409–412

    Article  Google Scholar 

  2. Bagheri A, Liu X‑C, Tassone C et al (2018) Reliability of three-dimensional spinal modeling of patients with idiopathic scoliosis using EOS system. Spine Deform 6:207–212

    Article  Google Scholar 

  3. Bone CM, Hsieh GH (2000) The risk of carcinogenesis from radiographs to pediatric orthopaedic patients. J Pediatr Orthop 20:251–254

    CAS  PubMed  Google Scholar 

  4. Courvoisier A, Drevelle X, Dubousset J et al (2013) Transverse plane 3D analysis of mild scoliosis. Eur Spine J 22:2427–2432

    Article  Google Scholar 

  5. Courvoisier A, Vialle R, Skalli W (2014) EOS 3D imaging: assessing the impact of brace treatment in adolescent idiopathic scoliosis AU—Courvoisier, Aurélien. Expert Rev Med Devices 11:1–3

    Article  CAS  Google Scholar 

  6. Deschênes S, Charron G, Beaudoin G et al (2010) Diagnostic imaging of spinal deformities: reducing patients radiation dose with a new slot-scanning X‑ray imager. Spine (Phila Pa 1976) 35:989–994

    Article  Google Scholar 

  7. Doody MM, Lonstein JE, Stovall M et al (2000) Breast cancer mortality after diagnostic radiography: findings from the US Scoliosis Cohort Study. Spine (Phila Pa 1976) 25:2052–2063

    Article  CAS  Google Scholar 

  8. Dubousset J, Charpak G, Skalli W et al (2007) Système EOS: la radiographie de la tête aux pieds face et profil simultanés à très basses doses de radiations: Un nouveau regard pour l’orthopédie. Rev Chir Orthop Reparatrice Appar Mot 93:141–143

    Article  CAS  Google Scholar 

  9. Dunn G (2004) Statistical Evaluation of Measurement Errors: Design and Analysis of Reliability Studies, 2nd ed. Arnold, London

    Google Scholar 

  10. Fang M‑Q, Wang C, Xiang G‑H et al (2015) Long-term effects of the Chêneau brace on coronal and sagittal alignment in adolescent idiopathic scoliosis. J Neurosurg Spine 23:505–509

    Article  Google Scholar 

  11. Faria R, Mckenna C, Wade R et al (2013) The EOS 2D/3D X‑ray imaging system: a cost-effectiveness analysis quantifying the health benefits from reduced radiation exposure. Eur J Radiol 82:e342–e349

    Article  Google Scholar 

  12. Ferrero E, Lafage R, Vira S et al (2017) Three-dimensional reconstruction using stereoradiography for evaluating adult spinal deformity: a reproducibility study. Eur Spine J 26:2112–2120

    Article  Google Scholar 

  13. Gille O, Champain N, Benchikh-El-Fegoun A et al (2007) Reliability of 3D reconstruction of the spine of mild scoliotic patients. Spine (Phila Pa 1976) 32:568–573

    Article  Google Scholar 

  14. Humbert L, De Guise JA, Aubert B et al (2009) 3D reconstruction of the spine from biplanar X‑rays using parametric models based on transversal and longitudinal inferences. Med Eng Phys 31:681–687

    Article  CAS  Google Scholar 

  15. Ilharreborde B, Steffen JS, Nectoux E et al (2011) Angle measurement reproducibility using EOSthree-dimensional reconstructions in adolescent idiopathic scoliosis treated by posterior instrumentation. Spine (Phila Pa 1976) 36:E1306–E1313

    Article  Google Scholar 

  16. Ilharreborde B, Ferrero E, Alison M et al (2016) EOS microdose protocol for the radiological follow-up of adolescent idiopathic scoliosis. Eur Spine J 25:526–531

    Article  Google Scholar 

  17. Illés T, Tunyogi-Csapó M, Somoskeöy S (2011) Breakthrough in three-dimensional scoliosis diagnosis: significance of horizontal plane view and vertebra vectors. Eur Spine J 20:135–143

    Article  Google Scholar 

  18. Kottner J, Audigé L, Brorson S et al (2011) Guidelines for reporting reliability and agreement studies (GRRAS) were proposed. Int J Nurs Stud 48:661–671

    Article  Google Scholar 

  19. Labelle H, Aubin C‑E, Jackson R et al (2011) Seeing the spine in 3D: how will it change what we do? J Pediatr Orthop 31:S37–S45

    Article  Google Scholar 

  20. Lafage R, Ferrero E, Henry JK et al (2015) Validation of a new computer-assisted tool to measure spino-pelvic parameters. Spine J 15:2493–2502

    Article  Google Scholar 

  21. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174. https://doi.org/10.2307/2529310

    Article  CAS  Google Scholar 

  22. Luo TD, Stans AA, Schueler BA et al (2015) Cumulative radiation exposure with EOS imaging compared with standard spine radiographs. Spine Deform 3:144–150

    Article  Google Scholar 

  23. Mettler FA Jr, Bhargavan M, Faulkner K et al (2009) Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources—1950–2007. Radiology 253:520–531

    Article  Google Scholar 

  24. Morel B, Moueddeb S, Blondiaux E et al (2018) Dose, image quality and spine modeling assessment of biplanar EOS micro-dose radiographs for the follow-up of in-brace adolescent idiopathic scoliosis patients. Eur Spine J 27:1082–1088

    Article  Google Scholar 

  25. Nault M‑L, Mac-Thiong J‑M, Roy-Beaudry M et al (2014) Three-dimensional spinal morphology can differentiate between progressive and nonprogressive patients with adolescent idiopathic scoliosis at the initial presentation: a prospective study. Spine (Phila Pa 1976) 39:E601

    Article  Google Scholar 

  26. Negrini S, Hresko TM, O’brien JP et al (2015) Recommendations for research studies on treatment of idiopathic scoliosis: Consensus 2014 between SOSORT and SRS non-operative management committee. Scoliosis 10:8

    Article  Google Scholar 

  27. Newton PO, Fujimori T, Doan J et al (2015) Defining the “three-dimensional sagittal plane” in thoracic adolescent idiopathic scoliosis. J Bone Joint Surg Am 97:1694–1701

    Article  Google Scholar 

  28. Newton PO, Khandwala Y, Bartley CE et al (2016) New EOS imaging protocol allows a substantial reduction in radiation exposure for scoliosis patients. Spine Deform 4:138–144

    Article  Google Scholar 

  29. Presciutti SM, Karukanda T, Lee M (2014) Management decisions for adolescent idiopathic scoliosis significantly affect patient radiation exposure. Spine J 14:1984–1990

    Article  Google Scholar 

  30. Preston DL, Cullings H, Suyama A et al (2008) Solid cancer incidence in atomic bomb survivors exposed in utero or as young children. J Natl Cancer Inst 100:428–436

    Article  Google Scholar 

  31. Rankin G, Stokes MJCR (1998) Reliability of assessment tools in rehabilitation: an illustration of appropriate statistical analyses. Clin Rehabil 12:187–199

    Article  CAS  Google Scholar 

  32. Rehm J, Germann T, Akbar M et al (2017) 3D-modeling of the spine using EOS imaging system: Inter-reader reproducibility and reliability. PLoS ONE 12:e171258

    Article  Google Scholar 

  33. Rigo M, Weiss H (2008) The Chêneau concept of bracing-biomechanical aspects. Stud Health Technol Inform 135:303

    PubMed  Google Scholar 

  34. Ronckers CM, Land CE, Miller JS et al (2010) Cancer mortality among women frequently exposed to radiographic examinations for spinal disorders. Radiat Res 174:83–90

    Article  CAS  Google Scholar 

  35. Rousseau M‑A, Laporte S, Chavary-Bernier E et al (2007) Reproducibility of measuring the shape and three-dimensional position of cervical vertebrae in upright position using the EOS stereoradiography system. Spine (Phila Pa 1976) 32:2569–2572

    Article  Google Scholar 

  36. Sangole A, Aubin C‑E, Labelle H et al (2010) The central hip vertical axis: a reference axis for the Scoliosis Research Society three-dimensional classification of idiopathic scoliosis. Spine (Phila Pa 1976) 35:E530–E534

    Article  Google Scholar 

  37. Seibert JA (2004) Tradeoffs between image quality and dose. Pediatr Radiol 34:S183–S195

    Article  Google Scholar 

  38. Shoukri M (2003) Reliability for continuous scale measurements. In: Measures of interobserver agreement

    Chapter  Google Scholar 

  39. Shrout PE, Fleiss JL (1979) Intraclass correlations: uses in assessing rater reliability. Psychol Bull 86:420

    Article  CAS  Google Scholar 

  40. Somoskeöy S, Tunyogi-Csapó M, Bogyó C et al (2012) Accuracy and reliability of coronal and sagittal spinal curvature data based on patient-specific three-dimensional models created by the EOS 2D/3D imaging system. Spine J 12:1052–1059

    Article  Google Scholar 

  41. Stokes IA (1994) Three-dimensional terminology of spinal deformity. A report presented to the Scoliosis Research Society by the Scoliosis Research Society Working Group on 3‑D terminology of spinal deformity. Spine (Phila Pa 1976) 19:236–248

    Article  CAS  Google Scholar 

  42. Tabard-Fougère A, Bonnefoy A, Hanquinet S et al (2016) Validity and reliability of spine rasterstereography in patients with adolescent idiopathic scoliosis. Spine (Phila Pa 1976). https://doi.org/10.1097/BRS.0000000000001679

    Article  Google Scholar 

Download references

Funding

This study was supported by the Deutsche Arthrose-Hilfe (P398-A326).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Akbar MD.

Ethics declarations

Conflict of interest

H. Almansour, W. Pepke, J. Rehm, T. Bruckner, D. Spira and M. Akbar declare that they have no competing interests.

This article does not contain any experiments conducted on humans or animals. Institutional review board approval was provided (Vote no. S‑378).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almansour, H., Pepke, W., Rehm, J. et al. Interrater reliability of three-dimensional reconstruction of the spine. Orthopäde 49, 350–358 (2020). https://doi.org/10.1007/s00132-019-03712-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00132-019-03712-x

Keywords

Schlüsselwörter

Navigation