Skip to main content

Advertisement

Log in

Insight into the genesis of the Zhaosu Carboniferous Mn carbonate deposit (NW China): constraints from petrography, geochemistry, and C–Mo isotopes

  • Article
  • Published:
Mineralium Deposita Aims and scope Submit manuscript

Abstract

The genesis (primary versus secondary) of Mn carbonate-rich sediments, which consist of sub-economic rocks and ore deposits, remains hotly debated. Here, we investigated the petrographic, geochemical, and C–Mo isotopic characteristics of the Zhaosu Mn carbonate deposit in northwestern China, in order to provide constraints on its origin. The Mn ores occur within a Carboniferous marine transgressive siliciclastic-carbonate succession, and are mainly comprised of Mn carbonate minerals with subordinate alabandite. Within the Mn ores, organic matter is commonly replaced by Mn carbonates, coupled with concentric Mn carbonates, suggesting that Mn carbonates formed during diagenesis. This is further supported by their negative δ13CVPDB values (from −2.4 to −10.7‰), negative δ98MoNIST+0.25 values (from −0.1 to −3.7‰), shale-normalized positive Ce anomalies (up to 1.2), and lower Y/Ho ratios (29-35) relative to seawater (~44). These all indicate that the Zhaosu Mn carbonate ores formed due to original Mn oxide reduction coupled with organic matter degradation during diagenesis. The extremely negative Mo isotopic values (as low as −3.7‰) likely resulted from a dual effect of original Mn oxide adsorption and subsequent Mo sequestration within weakly sulfidic pore waters during diagenesis. The ubiquity of alabandite in the Mn ores indicates a significant separation between Mn and Fe, and combined with the country-rock limestones with negative Ce anomalies, we infer that an oxic-suboxic stratified water column might have characterized the Zhaosu basin during Mn deposition. By compiling geochemical and isotopic features of major Mn carbonate-rich sediments in Earth’s history, we argue that ancient Mn carbonate-rich sediments, especially economic ore deposits, might result from original Mn oxide reduction during diagenesis and thus are a reliable proxy for oxic oceanic conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Modified from Xiao et al. (2013) and Yang et al. (2019). b Geologic sketch map of the Zhaosu Mn deposit showing the location of major mining districts. Revised from Li (2013)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

modified from Bonatti (1975), the (Fe+Mn)/4-(Zr+Ce+Y)×100-(Cu+Ni)×15 diagram is modified from Josso et al. (2017)

Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Algeo TJ, Lyons TW (2006) Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleohydrographic conditions. Paleoceanography 21:PA1016. https://doi.org/10.1029/2004pa001112A

    Article  Google Scholar 

  • Barling J, Anbar AD (2004) Molybdenum isotope fractionation during adsorption by manganese oxides. Earth Planet Sci Lett 217:315–329. https://doi.org/10.1016/S0012-821X(03)00608-3

    Article  Google Scholar 

  • Bau M (1996) Controls on the fractionation of isovalent trace elements in magmatic and aqueous systems: evidence from Y/Ho, Zr/Hf, and lanthanide tetrad effect. Contrib Mineral Petrol 123:323–333. https://doi.org/10.1007/s004100050159

    Article  Google Scholar 

  • Bau M, Dulski P (1996) Distribution of yttrium and rare-earth elements in the Penge and Kuruman iron-formations, Transvaal Supergroup, South Africa. Precambr Res 79:37–55. https://doi.org/10.1016/0301-9268(95)00087-9

    Article  Google Scholar 

  • Bau M, Schmidt K, Koschinsky A, Hein J, Kuhn T, Usui A (2014) Discriminating between different genetic types of marine ferro-manganese crusts and nodules based on rare earth elements and yttrium. Chem Geol 381:1–9. https://doi.org/10.1016/j.chemgeo.2014.05.004

    Article  Google Scholar 

  • Berner RA (1981) A new geochemical classification of sedimentary environments. J Sediment Petrol 51:359–365

    Google Scholar 

  • Beukes NJ, Swindell EPW, Wabo H (2016) Manganese deposits of Africa. Episodes 39:285–317. https://doi.org/10.18814/epiiugs/2016/v39i2/95779

    Article  Google Scholar 

  • Bonatti E, Fisher DE, Joensuu O, Rydell HS, Beyth M (1972) Iron-manganese-barium deposit from the Northern Afar Rift (Ethiopia). Econ Geol 67:717–730

    Article  Google Scholar 

  • Bonatti E (1975) Metallogenesis at oceanic spreading centers. Annu Rev Earth Planet Sci 3:401–431

    Article  Google Scholar 

  • Böttcher ME, Huckriede H (1997) First occurrence and stable isotope composition of authigenic gamma-MnS in the central Gotland Deep (Baltic Sea). Mar Geol 137:201–205. https://doi.org/10.1016/s0025-3227(96)00115-6

    Article  Google Scholar 

  • Burdige DJ (1993) The biogeochemistry of manganese and iron reduction in marine sediments. Earth Sci Rev 35:249–284

    Article  Google Scholar 

  • Burke IT, Kemp AES (2002) Microfabric analysis of Mn-carbonate laminae deposition and Mn-sulfide formation in the Gotland Deep, Baltic Sea. Geochim Cosmochim Acta 66:1589–1600

    Article  Google Scholar 

  • Cabral AR, Zeh A, Vianna NCD, Ackerman L, Pasava J, Lehmann B, Chrastny V (2019a) Molybdenum-isotope signals and cerium anomalies in Palaeoproterozoic manganese ore survive high-grade metamorphism. Sci Rep 9:1–7. https://doi.org/10.1038/s41598-019-40998-5

    Article  Google Scholar 

  • Cabral AR, Zeh A, Viana NCD, de Castro MP, Laufek F, Lehmann B, Queiroga G (2019b) Alabandite (MnS) in metamorphosed manganiferous rocks at Morro da Mina, Brazil: palaeoenvironmental significance. Eur J Mineral 31:973–982. https://doi.org/10.1127/ejm/2019/0031-2879

    Article  Google Scholar 

  • Calvert SE, Pedersen TF (1993) Geochemistry of recent oxic and anoxic marine sediments: implications for the geological record. Mar Geol 113:67–88. https://doi.org/10.1016/0025-3227(93)90150-t

    Article  Google Scholar 

  • Calvert SE, Pedersen TF (1996) Sedimentary geochemistry of manganese: implications for the environment of formation of manganiferous black shales. Econ Geol 91:36–47. https://doi.org/10.2113/gsecongeo.91.1.36

    Article  Google Scholar 

  • Canfield DE, Raiswell R, Westrich JT, Reaves CM, Berner RA (1986) The use of chromium reduction in the analysis of reduced inorganic sulfur in sediments and shales. Chem Geol 54:149–155. https://doi.org/10.1016/0009-2541(86)90078-1

    Article  Google Scholar 

  • Chen F, Pufahl PK, Wang Q, Matheson EJ, Shabaga BM, Zhang Q, Zeng Y, Le X, Ruan D, Zhao Y (2022) A new model for the genesis of Carboniferous Mn Ores, Longtou deposit, South China Block. Econ Geol 117:107–125. https://doi.org/10.5382/econgeo.4855

    Article  Google Scholar 

  • Chen X, Romaniello SJ, Anbar AD (2021) Preliminary exploration of molybdenum isotope fractionation during coprecipitation of molybdate with abiotic and microbial calcite. Chem Geol 566:120102. https://doi.org/10.1016/j.chemgeo.2021.120102

    Article  Google Scholar 

  • Cheng M, Zhang Z, Algeo TJ, Liu S, Liu X, Wang H, Chang B, Jin C, Pan W, Cao M, Li C (2021) Hydrological controls on marine chemistry in the Cryogenian Nanhua Basin (South China). Earth Sci Rev 218:103678. https://doi.org/10.1016/j.earscirev.2021.103678

    Article  Google Scholar 

  • Chow N, Morad S, Al-Aasm IS (2000) Origin of authigenic Mn-Fe carbonates and pore-water evolution in marine sediments: evidence from Cenozoic strata of the Arctic Ocean and Norwegian-Geenland Sea (ODP Leg 151). J Sediment Res 70:682–699. https://doi.org/10.1306/2dc40930-0e47-11d7-8643000102c1865d

    Article  Google Scholar 

  • Dahl TW, Hammarlund EU, Anbar AD, Bond DPG, Gill BC, Gordon GW, Knoll AH, Nielsen AT, Schovsbo NH, Canfield DE (2010) Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish. Proc Natl Acad Sci USA 107:17911–17915. https://doi.org/10.1073/pnas.1011287107

    Article  Google Scholar 

  • Daye M, Klepac-Ceraj V, Pajusalu M, Rowland S, Farrell-Sherman A, Beukes N, Tamura N, Fournier G, Bosak T (2019) Light-driven anaerobic microbial oxidation of manganese. Nature 576:311–314.Dickson AJ (2017) A molybdenum-isotope perspective on Phanerozoic deoxygenation events. Nat Geosci 10:721–726. https://doi.org/10.1038/ngeo3028

    Article  Google Scholar 

  • Dong ZG, Zhang BL, Shi FP, Zhang LC, Gao BY, Zhang X, Peng ZD, Wang CL (2021) Mineralogical and geochemical characteristics of Motuosala exhalative sedimentary Fe-Mn deposit in the Western Tianshan, Xinjiang, NW China. Acta Petrologica Sinica 37:1099–1121 (in Chinese with English abstract)

    Article  Google Scholar 

  • Fike DA, Bradley AS, Rose CV (2015) Rethinking the ancient sulfur cycle. In: Jeanloz R, Freeman KH (eds) Annual Review of Earth and Planetary Sciences, vol 43. Annual Reviews, Palo Alto, pp 593–622

    Google Scholar 

  • Gao ZF, Zhu XK, Wang D, Pan CX, Yan B, Li J (2021) Insights into hydrothermal controls and processes leading to the formation of the Late Ediacaran Gaoyan stratiform manganese-carbonate deposit. Southwest China. Ore Geology Reviews 139:16. https://doi.org/10.1016/j.oregeorev.2021.104524

    Article  Google Scholar 

  • Goldberg T, Archer C, Vance D, Thamdrup B, McAnena A, Poulton SW (2012) Controls on Mo isotope fractionations in a Mn-rich anoxic marine sediment, Gullmar Fjord, Sweden. Chem Geol 296–297:73–82. https://doi.org/10.1016/j.chemgeo.2011.12.020

    Article  Google Scholar 

  • Goto KT, Sekine Y, Shimoda G, Hein JR, Aoki S, Ishikawa A, Suzuki K, Gordon GW, Anbar AD (2020) A framework for understanding Mo isotope records of Archean and Paleoproterozoic Fe- and Mn-rich sedimentary rocks: Insights from modern marine hydrothermal Fe-Mn oxides. Geochim Cosmochim Acta 280:221–236. https://doi.org/10.1016/j.gca.2020.04.017

    Article  Google Scholar 

  • Goto KT, Sekine Y, Ito T, Suzuki K, Anbar AD, Gordon GW, Harigane Y, Maruoka T, Shimoda G, Kashiwabara T, Takaya Y, Nozaki T, Hein JR, Tetteh GM, Nyame FK, Kiyokawa S (2021) Progressive ocean oxygenation at ~2.2 Ga inferred from geochemistry and molybdenum isotopes of the Nsuta Mn deposit. Ghana. Chemical Geology 567:120116. https://doi.org/10.1016/j.chemgeo.2021.120116

    Article  Google Scholar 

  • Gutzmer J, Beukes NJ (1998) The manganese formation of the Neoproterozoic Penganga Group, India−Revision of an enigma. Econ Geol 93:1091–1102. https://doi.org/10.2113/gsecongeo.93.7.1091

    Article  Google Scholar 

  • Hardisty DS, Riedinger N, Planavsky NJ, Asael D, Andren T, Jorgensen BB, Lyons TW (2016) A Holocene history of dynamic water column redox conditions in the Landsort deep, Baltic sea. Am J Sci 316:713–745. https://doi.org/10.2475/08.2016.01

    Article  Google Scholar 

  • Häusler K, Dellwig O, Schnetger B, Feldens P, Leipe T, Moros M, Pollehne F, Schonke M, Wegwerth A, Arz HW (2018) Massive Mn carbonate formation in the Landsort Deep (Baltic Sea): hydrographic conditions, temporal succession, and Mn budget calculations. Mar Geol 395:260–270. https://doi.org/10.1016/j.margeo.2017.10.010

    Article  Google Scholar 

  • Hein JR, Koski RA (1987) Bacterially mediated diagenetic origin for chert-hosted manganese deposits in the Franciscan Complex, California Coast Ranges. Geology 15:722–726

    Article  Google Scholar 

  • Hein JR, Fan D, Ye J, Liu T, Yeh HW (1999) Composition and origin of Early Cambrian Tiantaishan phosphorite–Mn carbonate ores, Shaanxi Province, China. Ore Geol Rev 15:95–134

    Article  Google Scholar 

  • Hein JR, Mizell K, Koschinsky A, Conrad TA (2013) Deep-ocean mineral deposits as a source of critical metals for high-and green-technology applications: comparison with land-based resources. Ore Geol Rev 51:1–14

    Article  Google Scholar 

  • Heller C, Kuhn T, Versteegh GJM, Wegorzewski AV, Kasten S (2018) The geochemical behavior of metals during early diagenetic alteration of buried manganese nodules. Deep Sea Res Part I 142:16–33. https://doi.org/10.1016/j.dsr.2018.09.008

    Article  Google Scholar 

  • Helz GR, Bura-Nakic E, Mikac N, Ciglenecki I (2011) New model for molybdenum behavior in euxinic waters. Chem Geol 284:323–332. https://doi.org/10.1016/j.chemgeo.2011.03.012

    Article  Google Scholar 

  • Hem JD (1972) Chemical factors that influence the availability of iron and manganese in aqueous systems. Geol Soc Am Bull 83:443–450

    Article  Google Scholar 

  • Herndon EM, Havig JR, Singer DM, Mccormick ML, Kump LR (2018) Manganese and iron geochemistry in sediments underlying the redox-stratified Fayetteville Green Lake. Geochim Cosmochim Acta 231:50–63

    Article  Google Scholar 

  • Huckriede H, Meischner D (1996) Origin and environment of manganese-rich sediments within black-shale basins. Geochim Cosmochim Acta 60:1399–1413

    Article  Google Scholar 

  • Jenkyns HC, Géczy B, Marshall JD (1991) Jurassic manganese carbonates of central Europe and the early Toarcian anoxic event. J Geol 99:137–149

    Article  Google Scholar 

  • Johnson JE, Webb SM, Ma C, Fischer WW (2016) Manganese mineralogy and diagenesis in the sedimentary rock record. Geochim Cosmochim Acta 173:210–231. https://doi.org/10.1016/j.gca.2015.10.027

    Article  Google Scholar 

  • Josso P, Pelleter E, Pourret O, Fouquet Y, Etoubleau J, Cheron S, Bollinger C (2017) A new discrimination scheme for oceanic ferromanganese deposits using high field strength and rare earth elements. Ore Geol Rev 87:3–15. https://doi.org/10.1016/j.oregeorev.2016.09.003

    Article  Google Scholar 

  • Kampschulte A, Strauss H (2004) The sulfur isotopic evolution of Phanerozoic seawater based on the analysis of structurally substituted sulfate in carbonates. Chem Geol 204:255–286

    Article  Google Scholar 

  • Komiya T, Hirata T, Kitajima K, Yamamoto S, Shibuya T, Sawaki Y, Ishikawa T, Shu D, Li Y, Han J (2008) Evolution of the composition of seawater through geologic time, and its influence on the evolution of life. Gondwana Res 14:159–174. https://doi.org/10.1016/j.gr.2007.10.006

    Article  Google Scholar 

  • Krauskopf KB (1957) Separation of manganese from iron in sedimentary processes. Geochim Cosmochim Acta 12:61–84

    Article  Google Scholar 

  • Kuhn T, Bau M, Blum N, Halbach P (1998) Origin of negative Ce anomalies in mixed hydrothermal–hydrogenetic Fe–Mn crusts from the Central Indian Ridge. Earth Planetary Science Letters 163:207–220

    Article  Google Scholar 

  • Kuleshov VN, Bych AF (2002) Isotopic composition (δ13C, δ18O) and origin of manganese carbonate ores of the usa deposit (Kuznetskii Alatau). Lithol Min Resour 37:330–343. https://doi.org/10.1023/a:1019995322515

    Article  Google Scholar 

  • Lee JH, Kennedy DW, Dohnalkova A, Moore DA, Nachimuthu P, Reed SB, Fredrickson JK (2011) Manganese sulfide formation via concomitant microbial manganese oxide and thiosulfate reduction. Environ Microbiol 13:3275–3288. https://doi.org/10.1111/j.1462-2920.2011.02587.x

    Article  Google Scholar 

  • Lepland A, Stevens RL (1998) Manganese authigenesis in the Landsort Deep, Baltic Sea. Mar Geol 151:1–25

    Article  Google Scholar 

  • Lepot K (2020) Signatures of early microbial life from the Archean (4 to 2.5 Ga) eon. Earth-Science Reviews 209:103296. doi: https://doi.org/10.1016/j.earscirev.2020.103296.

  • Li HQ, Chen FW (2003) Geochronology of regional mineralization in Xinjiang. The Geological Publishing House, Beijing, Beijing

    Google Scholar 

  • Li FM, Peng XP, Shi FP, Zhou CP, Chen JZ (2011) Analysis on Fe-Mn mineralization regularity in Carboniferous volcanic-sedimentary basin of West Tianshan. Xinjiang Geology 29:55–60 (in Chinese with English abstract)

    Google Scholar 

  • Li FM (2013) Metallogenic regularity and prospecting direction of Fe-Mn ore in the Carboniferous vocanic-sedimentary basin in Western Tianshan. Dissertation, China University of Geosciences (Beijing)

  • Li J, Liang XR, Zhong LF, Wang XC, Ren ZY, Sun SL, Zhang ZF, Xu JF (2014) Measurement of the isotopic composition of Molybdenum in geological samples by MC-ICP-MS using a novel chromatographic extraction technique. Geostand Geoanal Res 38:345–354. https://doi.org/10.1111/j.1751-908X.2013.00279.x

    Article  Google Scholar 

  • Liu TB (1990) C-S-Fe relationships in shales hosting manganese ores from Mexico, China, and Newfoundland: implications for depositional environment and mineralization. Ore Geol Rev 5:325–340

    Article  Google Scholar 

  • Lu X, Dahl TW, Zheng W, Wang S, Kendall B (2020) Estimating ancient seawater isotope compositions and global ocean redox conditions by coupling the molybdenum and uranium isotope systems of euxinic organic-rich mudrocks. Geochim Cosmochim Acta 290:76–103. https://doi.org/10.1016/j.gca.2020.08.032

    Article  Google Scholar 

  • Lyons TW, Diamond CW, Konhauser KO (2020) Shedding light on manganese cycling in the early oceans. Proc Natl Acad Sci USA 117:25960–25962. https://doi.org/10.1073/pnas.2016447117

    Article  Google Scholar 

  • Macdonald R, Navarro JM, Upton BGJ, Davies GR (1994) Strong compositional zonation in peralkaline magma: Menengai, Kenya Rift Valley. J Volcanol Geotherm Res 60:301–325. https://doi.org/10.1016/0377-0273(94)90057-4

    Article  Google Scholar 

  • Mandernack KW, Fogel ML, Tebo BM, Usui A (1995) Oxygen-isotope analyses of chemically and microbially produced manganese oxides and manganates. Geochim Cosmochim Acta 59:4409–4425. https://doi.org/10.1016/0016-7037(95)00299-f

    Article  Google Scholar 

  • Maynard JB (2010) The chemistry of manganese ores through time: a signal of increasing diversity of Earth-surface environments. Econ Geol 105:535–552. https://doi.org/10.2113/gsecongeo.105.3.535

    Article  Google Scholar 

  • Maynard JB (2014) Manganiferous sediments, rocks, and ores. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry, 2nd edn. Elsevier, Oxford, pp 327–349

    Chapter  Google Scholar 

  • McLennan SM (1989) Rare-earth elements in sedimentary-rocks: influence of provenance and sedimentary processes. Rev Mineral 21:169–200

    Google Scholar 

  • Mukhopadhyay J, Gutzmer J, Beukes NJ (2005) Organotemplate structures in sedimentary manganese carbonates of the Neoproterozoic Penganga Group, Adilabad, India. J Earth Syst Sci 114:247–257. https://doi.org/10.1007/bf02702948

    Article  Google Scholar 

  • Nägler TF, Anbar AD, Archer C, Goldberg T, Gordon GW, Greber ND, Siebert C, Sohrin Y, Vance D (2014) Proposal for an international molybdenum isotope measurement standard and data representation. Geostand Geoanal Res 38:149–151. https://doi.org/10.1111/j.1751-908X.2013.00275.x

    Article  Google Scholar 

  • Neubert N, Nagler TF, Bottcher ME (2008) Sulfidity controls molybdenum isotope fractionation into euxinic sediments: evidence from the modern Black Sea. Geology 36:775–778. https://doi.org/10.1130/g24959a.1

    Article  Google Scholar 

  • Neumann T, Heiser U, Leosson MA, Kersten M (2002) Early diagenetic processes during Mn-carbonate formation: evidence from the isotopic composition of authigenic Ca-rhodochrosites of the Baltic Sea. Geochim Cosmochim Acta 66:867–879

    Article  Google Scholar 

  • Noda N, Imamura S, Sekine Y, Kurisu M, Fukushi K, Terada N, Uesugi S, Numako C, Takahashi Y, Hartmann J (2019) Highly oxidizing aqueous environments on early Mars inferred from scavenging pattern of trace metals on manganese oxides. J Geophys Res-Planets 124:1282–1295. https://doi.org/10.1029/2018je005892

    Article  Google Scholar 

  • Nozaki Y, Zhang J, Amakawa H (1997) The fractionation between Y and Ho in the marine environment. Earth Planet Sci Lett 148:329–340. https://doi.org/10.1016/s0012-821x(97)00034-4

    Article  Google Scholar 

  • Nyame FK, Beukes NJ, Kase K, Yamamoto M (2002) Compositional variations in manganese carbonate micronodules from the Lower Proterozoic Nsuta deposit, Ghana: product of authigenic precipitation or post-formational diagenesis? Sed Geol 154:159–175. https://doi.org/10.1016/s0037-0738(02)00128-8

    Article  Google Scholar 

  • Okita PM, Maynard JB, Spiker EC, Force ER (1988) Isotopic evidence for organic matter oxidation by manganese reduction in the formation of stratiform manganese carbonate ore. Geochim Cosmochim Acta 52:2679–2685

    Article  Google Scholar 

  • Okita PM (1992) Manganese carbonate mineralization in the Molango District, Mexico. Econ Geol 87:1345–1366. https://doi.org/10.2113/gsecongeo.87.5.1345

    Article  Google Scholar 

  • Okita PM, Shanks WC (1992) Origin of stratiform sediment-hosted manganese carbonate ore deposits: examples from Molango. Mexico, and TaoJiang, China Chemical Geology 99:139–163

    Article  Google Scholar 

  • Peacor DR, Essene EJ, Gaines AM (1987) Petrologic and crystal-chemical implications of cation order-disorder in kutnahorite [CaMn(CO3)2]. Am Miner 72:319–328

    Google Scholar 

  • Pinto L, Hérail G, Moine B, Fontan F, Charrier R, Dupré B (2004) Using geochemistry to establish the igneous provenances of the Neogene continental sedimentary rocks in the Central Depression and Altiplano, Central Andes. Sed Geol 166:157–183. https://doi.org/10.1016/j.sedgeo.2003.12.002

    Article  Google Scholar 

  • Planavsky N, Bekker A, Rouxel OJ, Kamber B, Hofmann A, Knudsen A, Lyons TW (2010) Rare Earth Element and yttrium compositions of Archean and Paleoproterozoic Fe formations revisited: new perspectives on the significance and mechanisms of deposition. Geochim Cosmochim Acta 74:6387–6405. https://doi.org/10.1016/j.gca.2010.07.021

    Article  Google Scholar 

  • Polgári M, Okita PM, Hein JR (1991) Stable isotope evidence for the origin of the Úrkút manganese ore deposit, Hungary. J Sediment Petrol 61:384–393

    Google Scholar 

  • Polgári M, Hein JR, Tóth AL, Pál-Molnár E, Vigh T, Bíró L, Fintor K (2012) Microbial action formed Jurassic Mn-carbonate ore deposit in only a few hundred years (Úrkút, Hungary). Geology 40:903–906

    Article  Google Scholar 

  • Polgari M, Gyollai I, Fintor K, Horvath H, Pal-Molnar E, Biondi JC (2019) Microbially mediated ore-forming processes and cell mineralization. Front Microbiol 10:1–20. https://doi.org/10.3389/fmicb.2019.02731

    Article  Google Scholar 

  • Qiu GM (1990) Characteristics of sedimentary environments of Motuosala iron-manganese deposit and Akeshake formation, Lower Carboniferous in Zhaosu-Motuosala area, Xinjiang. Xinjiang Geology 8:32–35 (in Chinese with English abstract)

    Google Scholar 

  • Rincon-Tomas B, Khonsari B, Muhlen D, Wickbold C, Schafer N, Hause-Reitner D, Hoppert M, Reitner J (2016) Manganese carbonates as possible biogenic relics in Archean settings. Int J Astrobiol 15:219–229. https://doi.org/10.1017/s1473550416000264

    Article  Google Scholar 

  • Roy S (1992) Environments and processes of manganese deposition. Econ Geol 87:1218–1236. https://doi.org/10.2113/gsecongeo.87.5.1218

    Article  Google Scholar 

  • Rudnick RL, Gao S (2003) The composition of the continental crust. In: Rudnick RL (ed). The Crust. Elsevier-Pergamon: Oxford

    Google Scholar 

  • Roy S (2006) Sedimentary manganese metallogenesis in response to the evolution of the Earth system. Earth Sci Rev 77:273–305. https://doi.org/10.1016/j.earscirev.2006.03.004

    Article  Google Scholar 

  • Sasmaz A, Sasmaz B, Hein JR (2021) Geochemical approach to the genesis of the Oligocene-stratiform manganese-oxide deposit, Chiatura (Georgia). Ore Geol Rev 128:103910. https://doi.org/10.1016/j.oregeorev.2020.103910

    Article  Google Scholar 

  • Scott C, Lyons TW (2012) Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: refining the paleoproxies. Chem Geol 324–325:19–27. https://doi.org/10.1016/j.chemgeo.2012.05.012

    Article  Google Scholar 

  • Su WB, Cai KD, Sun M, Wan B, Wang XS, Bao ZH, Xiao WJ (2018) Carboniferous volcanic rocks associated with back-arc extension in the western Chinese Tianshan, NW China: insight from temporal-spatial character, petrogenesis and tectonic significance. Lithos 310–311:241–254. https://doi.org/10.1016/j.lithos.2018.04.012

    Article  Google Scholar 

  • Sutherland KM, Wankel SD, Hansel CM (2018) Oxygen isotope analysis of bacterial and fungal manganese oxidation. Geobiology 16:399–411. https://doi.org/10.1111/gbi.12288

    Article  Google Scholar 

  • Tan Z, Jia W, Li J, Yin L, Wang S, Wu J, Song J, Pa P (2021) Geochemistry and molybdenum isotopes of the basal Datangpo Formation: implications for ocean-redox conditions and organic matter accumulation during the Cryogenian interglaciation. Palaeogeogr Palaeoclimatol Palaeoecol 563:110169. https://doi.org/10.1016/j.palaeo.2020.110169

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Tebo BM, Bargar JR, Clement BG, Dick GJ, Murray KJ, Parker D, Verity R, Webb SM (2004) Biogenic manganese oxides: properties and mechanisms of formation. Annu Rev Earth Planet Sci 32:287–328. https://doi.org/10.1146/annurev.earth.32.101802.120213

    Article  Google Scholar 

  • Thurston PC, Kamber BS, Whitehouse M (2012) Archean cherts in banded iron formation: Insight into Neoarchean ocean chemistry and depositional processes. Precambr Res 214–215:227–257. https://doi.org/10.1016/j.precamres.2012.04.004

    Article  Google Scholar 

  • Tostevin R, Wood RA, Shields GA, Poulton SW, Guilbaud R, Bowyer F, Penny AM, He T, Curtis A, Hoffmann KH, Clarkson MO (2016) Low-oxygen waters limited habitable space for early animals. Nat Commun 7:1–9. https://doi.org/10.1038/ncomms12818

    Article  Google Scholar 

  • Tribovillard N, Algeo TJ, Lyons T, Riboulleau A (2006) Trace metals as paleoredox and paleoproductivity proxies: an update. Chem Geol 232:12–32

    Article  Google Scholar 

  • Vedamati J, Chan C, Moffett JW (2015) Distribution of dissolved manganese in the Peruvian Upwelling and Oxygen Minimum Zone. Geochim Cosmochim Acta 156:222–240

    Article  Google Scholar 

  • Voegelin AR, Nägler TF, Samankassou E, Villa IM (2009) Molybdenum isotopic composition of modern and Carboniferous carbonates. Chem Geol 265:488–498. https://doi.org/10.1016/j.chemgeo.2009.05.015

    Article  Google Scholar 

  • Wang XS, Zhang X, Gao J, Li JL, Jiang T, Xue SC (2018) A slab break-off model for the submarine volcanic-hosted iron mineralization in the Chinese Western Tianshan: Insights from Paleozoic subduction-related to post-collisional magmatism. Ore Geol Rev 92:144–160. https://doi.org/10.1016/j.oregeorev.2017.11.015

    Article  Google Scholar 

  • Wasylenki LE, Rolfe BA, Weeks CL, Spiro TG, Anbar AD (2008) Experimental investigation of the effects of temperature and ionic strength on Mo isotope fractionation during adsorption to manganese oxides. Geochim Cosmochim Acta 72:5997–6005. https://doi.org/10.1016/j.gca.2008.08.027

    Article  Google Scholar 

  • Winchester JA, Floyd PA (1977) Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chem Geol 20:325–343. https://doi.org/10.1016/0009-2541(77)90057-2

    Article  Google Scholar 

  • Wittkop C, Swanner ED, Grengs A, Lambrecht N, Fakhraee M, Myrbo A, Bray AW, Poulton SW, Katsev S (2020) Evaluating a primary carbonate pathway for manganese enrichments in reducing environments. Earth Planet Sci Lett 538:116–201. https://doi.org/10.1016/j.epsl.2020.116201

    Article  Google Scholar 

  • Xiao JF, He JY, Yang HY, Wu CQ (2017) Comparison between Datangpo-type manganese ores and modern marine ferromanganese oxyhydroxide precipitates based on rare earth elements. Ore Geol Rev 89:290–308. https://doi.org/10.1016/j.oregeorev.2017.06.016

    Article  Google Scholar 

  • Xiao WJ, Windley BF, Allen MB, Han CM (2013) Paleozoic multiple accretionary and collisional tectonics of the Chinese Tianshan orogenic collage. Gondwana Res 23:1316–1341. https://doi.org/10.1016/j.gr.2012.01.012

    Article  Google Scholar 

  • Yang XQ, Mao JW, Jiang ZS, Santosh M, Zhang ZH, Duan SG, Wang DC (2019) The carboniferous Shikebutai iron deposit in western Tianshan, northwestern China: petrology, Fe-O-C-Si isotopes, and implications for iron pathways. Econ Geol 114:1207–1222

    Article  Google Scholar 

  • Yu WC, Algeo TJ, Du YS, Maynard B, Guo H, Zhou Q, Peng TP, Wang P, Yuan LJ (2016) Genesis of Cryogenian Datangpo manganese deposit: hydrothermal influence and episodic post-glacial ventilation of Nanhua Basin, South China. Palaeogeogr Palaeoclimatol Palaeoecol 459:321–337

    Article  Google Scholar 

  • Yu WC, Polgári M, Gyollai I, Fintor K, Szabó M, Kovács I, Fekete J, Du YS, Zhou Q (2019) Microbial metallogenesis of Cryogenian manganese ore deposits in South China. Precambr Res 322:122–135. https://doi.org/10.1016/j.precamres.2019.01.004

    Article  Google Scholar 

  • Yuan T (2003) Contrast of geological characteristics between Motuosala iron (manganese) deposit and Shikebutai iron deposit in West Tianshan Mountain of Xinjiang Autonomous Region. Contributions to Geology and Mineral Resources Research 18:88–92 (in Chinese with English abstract)

    Google Scholar 

  • Zhang BL, Wang CL, Robbins LJ, Zhang LC, Konhauser KO, Dong ZG, Li WJ, Peng ZD, Zheng MT (2020) Petrography and geochemistry of the Carboniferous Ortokarnash manganese deposit in the Western Kunlun Mountains, Xinjiang Province, China: implications for the depositional environment and the origin of mineralization. Econ Geol 115:1559–1588. https://doi.org/10.5382/econgeo.4729

    Article  Google Scholar 

  • Zhang B, Cao J, Liao Z, Zhang Y, Wu Q, Shi C, Hu K (2021) Dynamic biogeochemical cycling and mineralization of manganese of hydrothermal origin after the Marinoan glaciation. Chem Geol 584:120502. https://doi.org/10.1016/j.chemgeo.2021.120502

    Article  Google Scholar 

  • Zhang ZH, Hong W, Jiang ZS, Duan SG, Li FM, Shi FP (2014) Geological characteristics and metallogenesis of iron deposits in western Tianshan, China. Ore Geol Rev 57:425–440. https://doi.org/10.1016/j.oregeorev.2013.09.012

    Article  Google Scholar 

  • Zhao PP, Li J, Zhang L, Wang ZB, Kong DX, Ma JL, Wei GJ, Xu JF (2016) Molybdenum mass fractions and isotopic compositions of international geological reference materials. Geostand Geoanal Res 40:217–226. https://doi.org/10.1111/j.1751-908X.2015.00373.x

    Article  Google Scholar 

Download references

Acknowledgments

We are indebted to FengMing Li for sharing geological documents about the Zhaosu deposit, Yasheng Wu for fossil identification, as well as HongWei Li, JiangYan Yuan, LiHui Jia, Zihu Zhang, Shanke Liu, Zhidan Wang, and DingShuai Xue for laboratory assistance. We also thank associate editor Alexandre R. Cabral for handling our manuscript and Bernd Lehmann, Malcolm Hodgskiss, and two anonymous reviewers for their constructive comments.

Funding

This study was jointly supported by the National Natural Science Foundation of China (No. U1703242; 42102114), the National Key Basic Research and Development Program (No. 2018YFC0604001), and the Second Comprehensive Scientific Survey of the Qinghai-Tibet Plateau (No. 2019QZKK0802). Wang CL acknowledges additional support from the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (ZDBS-LY-DQC037), and Youth Innovation Promotion Association, Chinese Academy of Sciences. Zhang BL acknowledges additional support from the Project funded by China Postdoctoral Science Foundation (2021M703018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to ChangLe Wang or LianChang Zhang.

Additional information

Editorial handling: A. R. Cabral

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

126_2022_1105_MOESM1_ESM.pdf

Supplementary file1. Fig. A1 X-ray powder diffraction patterns of Mn carbonate ores from the Zhaosu Mn deposit. (PDF 429 KB)

126_2022_1105_MOESM2_ESM.xlsx

Supplementary file2. Table B1. Atomic percentage (At. %) of metal cations in Zhaosu Mn carbonate minerals. Table B2. EPMA data (wt. %) of alabandite in the Zhaosu Mn ores. (XLSX 14 KB)

126_2022_1105_MOESM3_ESM.xlsx

Supplementary file3. Table B3. Compilations of C isotopes, Mo isotopes and Ce anomalies for major Mn carbonate-rich sediments in Earth’s history. (XLSX 65 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Z., Peng, Z., Wang, C. et al. Insight into the genesis of the Zhaosu Carboniferous Mn carbonate deposit (NW China): constraints from petrography, geochemistry, and C–Mo isotopes. Miner Deposita 57, 1269–1289 (2022). https://doi.org/10.1007/s00126-022-01105-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00126-022-01105-3

Keywords

Navigation