Henquin JC, Dufrane D, Nenquin M (2006) Nutrient control of insulin secretion in isolated normal human islets. Diabetes 55(12):3470–3477. https://doi.org/10.2337/db06-0868
CAS
Article
PubMed
Google Scholar
Milner RD (1969) The secretion of insulin from foetal and postnatal rabbit pancreas in vitro in response to various substances. J Endocrinol 44(2):267–272. https://doi.org/10.1677/joe.0.0440267
CAS
Article
PubMed
Google Scholar
Rutter GA, Pullen TJ, Hodson DJ, Martinez-Sanchez A (2015) Pancreatic β-cell identity, glucose sensing and the control of insulin secretion. Biochem J 466:202–218
Article
Google Scholar
McCulloch LJ, van de Bunt M, Braun M, Frayn KN, Clark A, Gloyn AL (2011) GLUT2 (SLC2A2) is not the principal glucose transporter in human pancreatic beta cells: implications for understanding genetic association signals at this locus. Mol Genet Metab 104(4):648–653. https://doi.org/10.1016/j.ymgme.2011.08.026
CAS
Article
PubMed
Google Scholar
Rorsman P, Ashcroft FM (2018) Pancreatic β-cell electrical activity and insulin secretion: of mice and men. Physiol Rev 98(1):117–214. https://doi.org/10.1152/physrev.00008.2017
CAS
Article
PubMed
Google Scholar
Henquin JC (2000) Triggering and amplifying pathways of regulation of insulin secretion by glucose. Diabetes 49(11):1751–1760. https://doi.org/10.2337/diabetes.49.11.1751
CAS
Article
PubMed
Google Scholar
Kibbey RG, Pongratz RL, Romanelli AJ, Wollheim CB, Cline GW, Shulman GI (2007) Mitochondrial GTP regulates glucose-stimulated insulin secretion. Cell Metab 5(4):253–264. https://doi.org/10.1016/j.cmet.2007.02.008
CAS
Article
PubMed
PubMed Central
Google Scholar
Barbetti F, D’Annunzio G (2018) Genetic causes and treatment of neonatal diabetes and early childhood diabetes. Best Pract Res Clin Endocrinol Metab 32(4):575–591. https://doi.org/10.1016/j.beem.2018.06.008
Article
PubMed
Google Scholar
Mahajan A, Taliun D, Thurner M et al (2018) Fine-mapping type 2 diabetes loci to single-variant resolution using high-density imputation and islet-specific epigenome maps. Nat Genet 50(11):1505–1513. https://doi.org/10.1038/s41588-018-0241-6
CAS
Article
PubMed
PubMed Central
Google Scholar
Mitchell RK, Mondragon A, Chen L et al (2014) Selective disruption of Tcf7l2 in the pancreatic β cell impairs secretory function and lowers β cell mass. Hum Mol Genet 24:1390–1399
Article
PubMed
PubMed Central
Google Scholar
Dwivedi OP, Lehtovirta M, Hastoy B et al (2019) Loss of ZnT8 function protects against diabetes by enhanced insulin secretion. Nat Genet 51(11):1596–1606. https://doi.org/10.1038/s41588-019-0513-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Thomsen SK, Raimondo A, Hastoy B et al (2018) Type 2 diabetes risk alleles in PAM impact insulin release from human pancreatic β-cells. Nat Genet 50(8):1122–1131. https://doi.org/10.1038/s41588-018-0173-1
CAS
Article
PubMed
PubMed Central
Google Scholar
Carrat GR, Hu M, Nguyen-Tu MS et al (2017) Decreased STARD10 expression is associated with defective insulin secretion in humans and mice. Am J Hum Genet 100(2):238–256. https://doi.org/10.1016/j.ajhg.2017.01.011
CAS
Article
PubMed
PubMed Central
Google Scholar
Krentz NAJ, Gloyn AL (2020) Insights into pancreatic islet cell dysfunction from type 2 diabetes mellitus genetics. Nat Rev Endocrinol 16(4):202–212. https://doi.org/10.1038/s41574-020-0325-0
CAS
Article
PubMed
Google Scholar
Sekine N, Cirulli V, Regazzi R et al (1994) Low lactate dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in pancreatic β-cell. Potential role in nutrient sensing. J Biol Chem 269(7):4895–4902
CAS
PubMed
Google Scholar
Schuit F, De Vos A, Farfari S et al (1997) Metabolic fate of glucose in purified islet cells. Glucose- regulated anaplerosis in beta cells. J Biol Chem 272(30):18572–18579. https://doi.org/10.1074/jbc.272.30.18572
CAS
Article
PubMed
Google Scholar
Ishihara H, Wang H, Drewes LR, Wollheim CB (1999) Overexpression of monocarboxylate transporter and lactate dehydrogenase alters insulin secretory responses to pyruvate and lactate in beta cells. J Clin Invest 104:1621–1629
CAS
Article
PubMed
PubMed Central
Google Scholar
Pullen TJ, Sylow L, Sun G, Halestrap AP, Richter EA, Rutter GA (2012) Overexpression of monocarboxylate transporter-1 (Slc16a1) in the pancreatic β-cells leads to relative hyperinsulinism during exercise. Diabetes 61(7):1719–1725. https://doi.org/10.2337/db11-1531
CAS
Article
PubMed
PubMed Central
Google Scholar
Otonkoski T, Jiao H, Kaminen-Ahola N et al (2007) Physical exercise-induced hyperinsulinemic hypoglycemia caused by failure of monocarboxylate transporter 1 silencing in pancreatic beta cells. Am J Hum Genet 81(3):467–474. https://doi.org/10.1086/520960
CAS
Article
PubMed
PubMed Central
Google Scholar
Martinez-Sanchez A, Pullen TJ, Chabosseau P et al (2016) Disallowance of Acot7 in β-cells is required for normal glucose tolerance and insulin secretion. Diabetes 65(5):1268–1282. https://doi.org/10.2337/db15-1240
CAS
Article
PubMed
Google Scholar
Pullen TJ, Huising MO, Rutter GA (2017) Analysis of purified pancreatic islet beta and alpha cell transcriptomes reveals 11β-hydroxysteroid dehydrogenase (Hsd11b1) as a novel disallowed gene. Front Genet 8:41. https://doi.org/10.3389/fgene.2017.00041
CAS
Article
PubMed
PubMed Central
Google Scholar
Lemaire K, Thorrez L, Schuit F (2016) Disallowed and allowed gene expression: two faces of mature islet beta cells. Annu Rev Nutr 36(1):45–71. https://doi.org/10.1146/annurev-nutr-071715-050808
CAS
Article
PubMed
Google Scholar
Dhawan S, Tschen SI, Zeng C et al (2015) DNA methylation directs functional maturation of pancreatic beta cells. J Clin Invest 125(7):2851–2860. https://doi.org/10.1172/JCI79956
Article
PubMed
PubMed Central
Google Scholar
van Arensbergen J, Garcia-Hurtado J, Maestro MA et al (2013) Ring1b bookmarks genes in pancreatic embryonic progenitors for repression in adult β cells. Genes Dev 27(1):52–63. https://doi.org/10.1101/gad.206094.112
CAS
Article
PubMed
PubMed Central
Google Scholar
Patel KA, Kettunen J, Laakso M et al (2017) Heterozygous RFX6 protein truncating variants are associated with MODY with reduced penetrance. Nat Commun 8(1):888–00895. https://doi.org/10.1038/s41467-017-00895-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Solimena M, Schulte AM, Marselli L et al (2018) Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes. Diabetologia 61(3):641–657. https://doi.org/10.1007/s00125-017-4500-3
CAS
Article
PubMed
Google Scholar
Piccand J, Strasser P, Hodson DJ et al (2014) Rfx6 maintains the functional identity of adult pancreatic β-cells. Cell Rep 9(6):2219–2232. https://doi.org/10.1016/j.celrep.2014.11.033
CAS
Article
PubMed
PubMed Central
Google Scholar
Mitchell RK, Nguyen-Tu MS, Chabosseau P et al (2017) The transcription factor Pax6 is required for pancreatic β cell identity, glucose-regulated ATP synthesis, and Ca2+ dynamics in adult mice. J Biol Chem 292(21):8892–8906. https://doi.org/10.1074/jbc.M117.784629
CAS
Article
PubMed
PubMed Central
Google Scholar
Swisa A, Avrahami D, Eden N et al (2017) PAX6 maintains β cell identity by repressing genes of alternative islet cell types. J Clin Invest 127(1):230–243. https://doi.org/10.1172/JCI88015
Article
PubMed
Google Scholar
Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149(3):515–524. https://doi.org/10.1016/j.cell.2012.04.005
CAS
Article
PubMed
PubMed Central
Google Scholar
Martinez-Sanchez A, Nguyen-Tu MS, Rutter GA (2015) DICER inactivation identifies pancreatic β-cell “disallowed” genes targeted by microRNAs. Mol Endocrinol 29(7):1067–1079. https://doi.org/10.1210/me.2015-1059
CAS
Article
PubMed
PubMed Central
Google Scholar
Pullen TJ, da Silva Xavier G, Kelsey G, Rutter GA (2011) miR-29a and miR-29b contribute to pancreatic β-cell specific silencing of Monocarboxylate Transporter 1 (Mct1/slc16a1). Mol Cell Biol 31(15):3182–3194. https://doi.org/10.1128/MCB.01433-10
CAS
Article
PubMed
PubMed Central
Google Scholar
Tugay K, Guay C, Marques AC et al (2016) Role of microRNAs in the age-associated decline of pancreatic beta cell function in rat islets. Diabetologia 59(1):161–169. https://doi.org/10.1007/s00125-015-3783-5
CAS
Article
PubMed
Google Scholar
Supale S, Li N, Brun T, Maechler P (2012) Mitochondrial dysfunction in pancreatic β cells. Trends Endocrinol Metab 23(9):477–487. https://doi.org/10.1016/j.tem.2012.06.002
CAS
Article
PubMed
Google Scholar
Mulder H, Ling C (2009) Mitochondrial dysfunction in pancreatic beta-cells in type 2 diabetes. Mol Cell Endocrinol 297(1-2):34–40. https://doi.org/10.1016/j.mce.2008.05.015
CAS
Article
PubMed
Google Scholar
Haythorne E, Rohm M, van de Bunt M et al (2019) Diabetes causes marked inhibition of mitochondrial metabolism in pancreatic beta-cells. Nat Commun 10(1):2474–10189. https://doi.org/10.1038/s41467-019-10189-x
Article
PubMed
PubMed Central
Google Scholar
van den Ouweland JM, Lemkes HH, Ruitenbeek W et al (1992) Mutation in mitochondrial tRNA(Leu)(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet 1(5):368–371. https://doi.org/10.1038/ng0892-368
Article
PubMed
Google Scholar
Silva JP, Kohler M, Graff C et al (2000) Impaired insulin secretion and beta-cell loss in tissue-specific knockout mice with mitochondrial diabetes. Nat Genet 26(3):336–340. https://doi.org/10.1038/81649
CAS
Article
PubMed
Google Scholar
Cnop M, Igoillo-Esteve M, Rai M et al (2012) Central role and mechanisms of β-cell dysfunction and death in friedreich ataxia-associated diabetes. Ann Neurol 72(6):971–982. https://doi.org/10.1002/ana.23698
CAS
Article
PubMed
PubMed Central
Google Scholar
Igoillo-Esteve M, Oliveira AF, Cosentino C et al (2020) Exenatide induces frataxin expression and improves mitochondrial function in Friedreich ataxia. JCI Insight 5:134221
Article
PubMed
Google Scholar
Rutter GA, Theler J-M, Murta M, Wollheim CB, Pozzan T, Rizzuto R (1993) Stimulated Ca2+ influx raises mitochondrial free Ca2+ to supramicromolar levels in a pancreatic β-cell line: possible role in glucose and agonist-induced insulin secretion. J Biol Chem 268(30):22385–22390
CAS
PubMed
Google Scholar
Denton RM, McCormack JG (1980) On the role of the calcium transport cycle in the heart and other mammalian mitochondria. FEBS Lett 119(1):1–8. https://doi.org/10.1016/0014-5793(80)80986-0
CAS
Article
PubMed
Google Scholar
Georgiadou E, Haythorne E, Dickerson MT et al (2020) The pore-forming subunit MCU of the mitochondrial Ca2+ uniporter is required for normal glucose-stimulated insulin secretion in vitro and in vivo in mice. Diabetologia 63(7):1368–1381. https://doi.org/10.1007/s00125-020-05148-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Dlaskova A, Spacek T, Santorova J et al (2010) 4Pi microscopy reveals an impaired three-dimensional mitochondrial network of pancreatic islet beta-cells, an experimental model of type-2 diabetes. Biochim Biophys Acta 1797(6-7):1327–1341. https://doi.org/10.1016/j.bbabio.2010.02.003
CAS
Article
PubMed
Google Scholar
Anello M, Lupi R, Spampinato D et al (2005) Functional and morphological alterations of mitochondria in pancreatic beta cells from type 2 diabetic patients. Diabetologia 48(2):282–289. https://doi.org/10.1007/s00125-004-1627-9
CAS
Article
PubMed
Google Scholar
Masini M, Martino L, Marselli L et al (2017) Ultrastructural alterations of pancreatic beta cells in human diabetes mellitus. Diabetes Metab Res Rev 33:10
Article
Google Scholar
Hennings TG, Chopra DG, DeLeon ER et al (2018) In vivo deletion of β-cell Drp1 impairs insulin secretion without affecting islet oxygen consumption. Endocrinology 159(9):3245–3256. https://doi.org/10.1210/en.2018-00445
CAS
Article
PubMed
PubMed Central
Google Scholar
Georgiadou E, Rodriguez TA, Muralidharan C, et al (2020) Pancreatic beta cell selective deletion of mitofusins 1 and 2 (Mfn1 and Mfn2) disrupts mitochondrial architecture and abrogates glucose-stimulated insulin secretion in vivo. BioRxiv https://biorxiv.org/cgi/content/short/2020.04.22.055384v1
Reinhardt F, Schultz J, Waterstradt R, Baltrusch S (2016) Drp1 guarding of the mitochondrial network is important for glucose-stimulated insulin secretion in pancreatic beta cells. Biochem Biophys Res Commun 474(4):646–651. https://doi.org/10.1016/j.bbrc.2016.04.142
CAS
Article
PubMed
Google Scholar
Zhang Z, Wakabayashi N, Wakabayashi J et al (2011) The dynamin-related GTPase Opa1 is required for glucose-stimulated ATP production in pancreatic beta cells. Mol Biol Cell 22(13):2235–2245. https://doi.org/10.1091/mbc.e10-12-0933
CAS
Article
PubMed
PubMed Central
Google Scholar
Rocha N, Bulger DA, Frontini A et al (2017) Human biallelic MFN2 mutations induce mitochondrial dysfunction, upper body adipose hyperplasia, and suppression of leptin expression. Elife 6:e23813. https://doi.org/10.7554/eLife.23813
Kowaltowski AJ, Menezes-Filho SL, Assali EA et al (2019) Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis. FASEB J 33(12):13176–13188. https://doi.org/10.1096/fj.201901136R
CAS
Article
PubMed
Google Scholar
Gutierrez GD, Gromada J, Sussel L (2017) Heterogeneity of the pancreatic beta cell. Front Genet 8:22. https://doi.org/10.3389/fgene.2017.00022
CAS
Article
PubMed
PubMed Central
Google Scholar
Hodson DJ, Mitchell RK, Bellomo EA et al (2013) Lipotoxicity disrupts incretin-regulated human β cell connectivity. J Clin Invest 123(10):4182–4194. https://doi.org/10.1172/JCI68459
CAS
Article
PubMed
PubMed Central
Google Scholar
Head WS, Orseth ML, Nunemaker CS, Satin LS, Piston DW, Benninger RK (2012) Connexin-36 gap junctions regulate in vivo first- and second-phase insulin secretion dynamics and glucose tolerance in the conscious mouse. Diabetes 61(7):1700–1707. https://doi.org/10.2337/db11-1312
CAS
Article
PubMed
PubMed Central
Google Scholar
Johnston NR, Mitchell RK, Haythorne E et al (2016) Beta cell hubs dictate pancreatic islet responses to glucose. Cell Metab 24(3):389–401. https://doi.org/10.1016/j.cmet.2016.06.020
CAS
Article
PubMed
PubMed Central
Google Scholar
Stozer A, Gosak M, Dolensek J et al (2013) Functional connectivity in islets of Langerhans from mouse pancreas tissue slices. PLoS Comput Biol 9(2):e1002923. https://doi.org/10.1371/journal.pcbi.1002923
CAS
Article
PubMed
PubMed Central
Google Scholar
Westacott MJ, Ludin NWF, Benninger RKP (2017) Spatially organized β-cell subpopulations control electrical dynamics across islets of Langerhans. Biophys J 113(5):1093–1108. https://doi.org/10.1016/j.bpj.2017.07.021
CAS
Article
PubMed
PubMed Central
Google Scholar
Salem V, Silva LS, Suba S et al (2019) Leader beta cells coordinate Ca2+ dynamics across pancreatic islets in vivo. Nat Metab 1(6):615–629. https://doi.org/10.1038/s42255-019-0075-2
CAS
Article
PubMed
Google Scholar
Keenan HA, Sun JK, Levine J et al (2010) Residual insulin production and pancreatic β-cell turnover after 50 years of diabetes: Joslin Medalist Study. Diabetes. 59(11):2846–2853. https://doi.org/10.2337/db10-0676
CAS
Article
PubMed
PubMed Central
Google Scholar
Marselli L, Thorne J, Dahiya S et al (2010) Gene expression profiles of beta-cell enriched tissue obtained by laser capture microdissection from subjects with type 2 diabetes. PLoS ONE 5(7):e11499. https://doi.org/10.1371/journal.pone.0011499
CAS
Article
PubMed
PubMed Central
Google Scholar
Fadista J, Vikman P, Laakso EO et al (2014) Global genomic and transcriptomic analysis of human pancreatic islets reveals novel genes influencing glucose metabolism. Proc Natl Acad Sci U S A 111(38):13924–13929. https://doi.org/10.1073/pnas.1402665111
CAS
Article
PubMed
PubMed Central
Google Scholar
Jacovetti C, Matkovich SJ, Rodriguez-Trejo A, Guay C, Regazzi R (2015) Postnatal beta-cell maturation is associated with islet-specific microRNA changes induced by nutrient shifts at weaning. Nat Commun 6(1):8084. https://doi.org/10.1038/ncomms9084
Article
PubMed
Google Scholar