Weiss M, Steiner DF, Philipson LH (2014) Insulin biosynthesis, secretion, structure, and structure-activity relationships. In: Feingold K, Anawalt B, Boyce A et al (eds) Endotext [Internet]. MDText.com, Inc., South Dartmouth (MA)
Google Scholar
Csajbók ÉA, Tamás G (2016) Cerebral cortex: a target and source of insulin? Diabetologia 2016 598 59(8):1609–1615. https://doi.org/10.1007/s00125-016-3996-2
CAS
Article
Google Scholar
Suckale J, Solimena M (2010) The insulin secretory granule as a signaling hub. Trends Endocrinol Metab 21(10):599–609. https://doi.org/10.1016/J.TEM.2010.06.003
CAS
Article
PubMed
Google Scholar
Arvan P, Halban PA (2004) Sorting ourselves out: seeking consensus on trafficking in the beta-cell. Traffic 5(1):53–61. https://doi.org/10.1111/j.1600-0854.2004.00152.x
CAS
Article
PubMed
Google Scholar
Lee Y, Kim J, Park K, Lee M-S (2019) β-Cell autophagy: mechanism and role in β-cell dysfunction. Mol Metab 27:S92–S103. https://doi.org/10.1016/j.molmet.2019.06.014
CAS
Article
PubMed Central
Google Scholar
Müller A, Neukam M, Ivanova A et al (2017) A global approach for quantitative super resolution and electron microscopy on cryo and epoxy sections using self-labeling protein tags. Sci Rep 7(1):1–13. https://doi.org/10.1038/s41598-017-00033-x
CAS
Article
Google Scholar
Goginashvili A, Zhang Z, Erbs E et al (2015) Insulin secretory granules control autophagy in pancreatic β cells. Science 347(6224):878–882. https://doi.org/10.1126/science.aaa2628
CAS
Article
PubMed
Google Scholar
Rhodes CJ, Halban PA (1987) Newly synthesized proinsulin/insulin and stored insulin are released from pancreatic B cells predominantly via a regulated, rather than a constitutive, pathway. J Cell Biol 105(1):145–153. https://doi.org/10.1083/jcb.105.1.145
CAS
Article
PubMed
Google Scholar
Ivanova A, Kalaidzidis Y, Dirkx R et al (2013) Age-dependent labeling and imaging of insulin secretory granules. Diabetes 62(11):3687–3696. https://doi.org/10.2337/db12-1819
CAS
Article
PubMed
PubMed Central
Google Scholar
Szabat M, Page MM, Panzhinskiy E et al (2016) Reduced insulin production relieves endoplasmic reticulum stress and induces β cell proliferation. Cell Metab 23(1):179–193. https://doi.org/10.1016/j.cmet.2015.10.016
CAS
Article
PubMed
Google Scholar
Schuit FC, Kiekens R, Pipeleers DG (1991) Measuring the balance between insulin synthesis and insulin release. Biochem Biophys Res Commun 178(3):1182–1187. https://doi.org/10.1016/0006-291X(91)91017-7
CAS
Article
PubMed
Google Scholar
Guest PC, Bailyes EM, Rutherford NG, Hutton JC (1991) Insulin secretory granule biogenesis: co-ordinate regulation of the biosynthesis of the majority of constituent proteins. Biochem J 274(Pt 1):73–78. https://doi.org/10.1042/bj2740073
CAS
Article
PubMed
PubMed Central
Google Scholar
Wicksteed, Barton, Herbert TP et al (2001) Cooperativity between the preproinsulin mRNA untranslated regions is necessary for glucose-stimulated translation. J Biol Chem 276(25):22553–22558. https://doi.org/10.1074/jbc.M011214200
CAS
Article
PubMed
Google Scholar
Jennings RE, Scharfmann R, Staels W (2020) Transcription factors that shape the mammalian pancreas. Diabetologia. https://doi.org/10.1007/s00125-020-05161-0
Evans-Molina C, Garmey JC, Ketchum R, Brayman KL, Deng S, Mirmira RG (2007) Glucose regulation of insulin gene transcription and pre-mRNA processing in human islets. Diabetes 56(3):827–835. https://doi.org/10.2337/db06-1440
CAS
Article
PubMed
PubMed Central
Google Scholar
Welsh M, Nielsen DA, MacKrell AJ, Steiner DF (1985) Control of insulin gene expression in pancreatic beta-cells and in an insulin-producing cell line, RIN-5F cells. II. Regulation of insulin mRNA stability. J Biol Chem 260(25):13590–13594
CAS
PubMed
Google Scholar
Itoh N, Okamoto H (1980) Translational control of proinsulin synthesis by glucose. Nature 283(5742):100–102. https://doi.org/10.1038/283100a0
CAS
Article
PubMed
Google Scholar
Tillmar L, Carlsson C, Welsh N (2002) Control of insulin mRNA stability in rat pancreatic islets: regulatory role of a 3′-untranslated region pyrimidine-rich sequence. J Biol Chem 277(2):1099–1106. https://doi.org/10.1074/jbc.M108340200
CAS
Article
PubMed
Google Scholar
Hammonds P, Schofield PN, Ashcroft SJH, Sutton R, Gray DWR (1987) Regulation and specificity of glucose-stimulated insulin gene expression in human islets of Langerhans. FEBS Lett 223(1):131–137. https://doi.org/10.1016/0014-5793(87)80523-9
CAS
Article
PubMed
Google Scholar
Welsh M, Scherberg N, Gilmore R, Steiner DF (1986) Translational control of insulin biosynthesis. Evidence for regulation of elongation, initiation and signal-recognition-particle-mediated translational arrest by glucose. Biochem J 235(2):459–467. https://doi.org/10.1042/bj2350459
CAS
Article
PubMed
PubMed Central
Google Scholar
Jahr H, Schröder D, Ziegler B, Ziegler M, Zühlke H (1980) Transcriptional and translational control of glucose-stimulated (pro)insulin biosynthesis. Eur J Biochem 110(2):499–505. https://doi.org/10.1111/j.1432-1033.1980.tb04892.x
CAS
Article
PubMed
Google Scholar
Fred RG, Sandberg M, Pelletier J, Welsh N (2011) The human insulin mRNA is partly translated via a cap- and eIF4A-independent mechanism. Biochem Biophys Res Commun 412(4):693–698. https://doi.org/10.1016/j.bbrc.2011.08.030
CAS
Article
PubMed
Google Scholar
Knoch KP, Nath-Sain S, Petzold A et al (2014) PTBP1 is required for glucose-stimulated cap-independent translation of insulin granule proteins and Coxsackieviruses in beta cells. Mol Metab 3(5):518–530. https://doi.org/10.1016/j.molmet.2014.05.002
CAS
Article
PubMed
PubMed Central
Google Scholar
Greenman IC, Gomez E, Moore CEJ, Herbert TP (2005) The selective recruitment of mRNA to the ER and an increase in initiation are important for glucose-stimulated proinsulin synthesis in pancreatic β-cells. Biochem J 391(2):291–300. https://doi.org/10.1042/BJ20050468
CAS
Article
PubMed
PubMed Central
Google Scholar
Fred RG, Welsh N (2009) The importance of RNA binding proteins in preproinsulin mRNA stability. Mol Cell Endocrinol 297(1–2):28–33. https://doi.org/10.1016/J.MCE.2008.06.007
CAS
Article
PubMed
Google Scholar
Magro MG, Solimena M (2013) Regulation of β-cell function by RNA-binding proteins. Mol Metab 2(4):348–355. https://doi.org/10.1016/j.molmet.2013.09.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Fred RG, Mehrabi S, Adams CM, Welsh N (2016) PTB and TIAR binding to insulin mRNA 3′- and 5′UTRs; implications for insulin biosynthesis and messenger stability. Heliyon 2(9):1–26. https://doi.org/10.1016/j.heliyon.2016.e00159
Article
Google Scholar
Knoch KP, Bergetr H, Borgonovo B et al (2004) Polypyrimidine tract-binding protein promotes insulin secretory granule biogenesis. Nat Cell Biol 6(3):207–214. https://doi.org/10.1038/ncb1099
CAS
Article
PubMed
Google Scholar
Knoch KP, Meisterfeld R, Kersting S et al (2006) cAMP-dependent phosphorylation of PTB1 promotes the expression of insulin secretory granule proteins in β cells. Cell Metab 3(2):123–134. https://doi.org/10.1016/j.cmet.2005.12.008
CAS
Article
PubMed
Google Scholar
Lee EK, Kim W, Tominaga K et al (2012) RNA-binding protein HuD controls insulin translation. Mol Cell 45(6):826–835. https://doi.org/10.1016/J.MOLCEL.2012.01.016
CAS
Article
PubMed
PubMed Central
Google Scholar
Süss C, Czupalla C, Winter C et al (2009) Rapid changes of mRNA-binding protein levels following glucose and 3-isobutyl-1-methylxanthine stimulation of insulinoma INS-1 cells. Mol Cell Proteomics 8(3):393–408. https://doi.org/10.1074/mcp.M800157-MCP200
CAS
Article
PubMed
PubMed Central
Google Scholar
Taneera J, Prasad RB, Dhaiban S et al (2018) Silencing of the FTO gene inhibits insulin secretion: an in vitro study using GRINCH cells. Mol Cell Endocrinol 472(6):10–17. https://doi.org/10.1016/j.mce.2018.06.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Solimena M, Schulte AM, Marselli L et al (2018) Systems biology of the IMIDIA biobank from organ donors and pancreatectomised patients defines a novel transcriptomic signature of islets from individuals with type 2 diabetes. Diabetologia 61(3):641–657. https://doi.org/10.1007/s00125-017-4500-3
CAS
Article
PubMed
Google Scholar
Ghiasi SM, Krogh N, Tyrberg B, Mandrup-Poulsen T (2018) The no-go and nonsense-mediated RNA decay pathways are regulated by inflammatory cytokines in insulin-producing cells and human islets and determine B-cell insulin biosynthesis and survival. Diabetes 67(10):2019–2037. https://doi.org/10.2337/db18-0073
CAS
Article
PubMed
Google Scholar
Eizirik DL, Sammeth M, Bouckenooghe T et al (2012) The human pancreatic islet transcriptome: expression of candidate genes for type 1 diabetes and the impact of pro-inflammatory cytokines. PLoS Genet 8(3):e1002552. https://doi.org/10.1371/journal.pgen.1002552
CAS
Article
PubMed
PubMed Central
Google Scholar
Halban PA, Wollheim CB (1980) Intracellular degradation of insulin stores by rat pancreatic islets in vitro. An alternative pathway for homeostasis of pancreatic insulin content. J Biol Chem 255(13):6003–6006
CAS
PubMed
Google Scholar
Boland BB, Rhodes CJ, Grimsby JS (2017) The dynamic plasticity of insulin production in β-cells. Mol Metab 6(9):958–973. https://doi.org/10.1016/j.molmet.2017.04.010
CAS
Article
PubMed
PubMed Central
Google Scholar
Li Z, Zhou M, Cai Z et al (2018) RNA-binding protein DDX1 is responsible for fatty acid-mediated repression of insulin translation. Nucleic Acids Res 46(22):12052–12066. https://doi.org/10.1093/nar/gky867
CAS
Article
PubMed
PubMed Central
Google Scholar
Bollheimer LC, Skelly RH, Chester MW, McGarry JD, Rhodes CJ (1998) Chronic exposure to free fatty acid reduces pancreatic β cell insulin content by increasing basal insulin secretion that is not compensated for by a corresponding increase in proinsulin biosynthesis translation. J Clin Invest 101(5):1094–1101. https://doi.org/10.1172/JCI420
CAS
Article
PubMed
PubMed Central
Google Scholar
Cunha DA, Hekerman P, Ladrière L et al (2008) Initiation and execution of lipotoxic ER stress in pancreatic β-cells. J Cell Sci 121(Pt 14):2308–2318. https://doi.org/10.1242/jcs.026062
CAS
Article
PubMed
PubMed Central
Google Scholar
van den Ouweland JMW, Lemkes HHPJ, Ruitenbeek W et al (1992) Mutation in mitochondrial tRNALeu(UUR) gene in a large pedigree with maternally transmitted type II diabetes mellitus and deafness. Nat Genet 1(5):368–371. https://doi.org/10.1038/ng0892-368
Article
PubMed
Google Scholar
Steinthorsdottir V, Thorleifsson G, Reynisdottir I et al (2007) A variant in CDKAL1 influences insulin response and risk of type 2 diabetes. Nat Genet 39(6):770–775. https://doi.org/10.1038/ng2043
CAS
Article
PubMed
Google Scholar
Igoillo-Esteve M, Genin A, Lambert N et al (2013) tRNA methyltransferase homolog gene TRMT10A mutation in young onset diabetes and primary microcephaly in humans. PLoS Genet 9(10):e1003888. https://doi.org/10.1371/journal.pgen.1003888
CAS
Article
PubMed
PubMed Central
Google Scholar
Kracht M, van Lummel M, Nikolic T et al (2017) Autoimmunity against a defective ribosomal insulin gene product in type 1 diabetes. Nat Med 23(4):501–507
CAS
Article
Google Scholar
Krautz C, Wolk S, Steffen A et al (2013) Effects of immunosuppression on alpha and beta cell renewal in transplanted mouse islets. Diabetologia 56(7):1596–1604. https://doi.org/10.1007/s00125-013-2895-z
CAS
Article
PubMed
Google Scholar
Fred RG, Bang-Berthelsen CH, Mandrup-Poulsen T, Grunnet LG, Welsh N (2010) High glucose suppresses human islet insulin biosynthesis by inducing miR-133a leading to decreased polypyrimidine tract binding protein-expression. PLoS One 5(5):e10843. https://doi.org/10.1371/journal.pone.0010843
CAS
Article
PubMed
PubMed Central
Google Scholar
Ehehalt F, Knoch K-P, Erdmann K et al (2010) Impaired insulin turnover in islets from type 2 diabetic patients. Islets 2(1):30–36. https://doi.org/10.4161/isl.2.1.10098
Article
PubMed
Google Scholar
Heni M, Ketterer C, Wagner R et al (2012) Polymorphism rs11085226 in the gene encoding polypyrimidine tract-binding protein 1 negatively affects glucose-stimulated insulin secretion. PLoS One 7(10):1–7. https://doi.org/10.1371/journal.pone.0046154
CAS
Article
Google Scholar
Steiner DF, Tager HS, Chan SJ, Nanjo K, Sanke T, Rubenstein AH (1990) Lessons learned from molecular biology of insulin-gene mutations. Diabetes Care 13(6):600–609. https://doi.org/10.2337/diacare.13.6.600
CAS
Article
PubMed
Google Scholar
Støy J, Steiner DF, Park SY, Ye H, Philipson LH, Bell GI (2010) Clinical and molecular genetics of neonatal diabetes due to mutations in the insulin gene. Rev Endocr Metab Disord 11(3):205–215. https://doi.org/10.1007/s11154-010-9151-3
Article
PubMed
PubMed Central
Google Scholar
Liu M, Weiss MA, Arunagiri A et al (2018) Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes Obes Metab 20:28–50. https://doi.org/10.1111/dom.13378
CAS
Article
PubMed
PubMed Central
Google Scholar
Guo H, Xiong Y, Witkowski P et al (2014) Inefficient translocation of preproinsulin contributes to pancreatic β cell failure and late-onset diabetes. J Biol Chem 289(23):16290–16302. https://doi.org/10.1074/jbc.M114.562355
CAS
Article
PubMed
PubMed Central
Google Scholar
DIAbetes Genetics Replication And Meta-analysis (DIAGRAM) Consortium, Asian Genetic Epidemiology Network Type 2 Diabetes (AGEN-T2D) Consortium, South Asian Type 2 Diabetes (SAT2D) Consortium, Mexican American Type 2 Diabetes (MAT2D) Consortium, Type 2 Diabetes Genetic Exploration by Next-generation sequencing in multi-Ethnic Samples (T2D-GENES) Consortium (2014) Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet 46(3):234–244. https://doi.org/10.1038/ng.2897
CAS
Article
Google Scholar
Kasuga Y, Hata K, Tajima A et al (2017) Association of common polymorphisms with gestational diabetes mellitus in Japanese women: a case-control study. Endocr J 64(4):463–475. https://doi.org/10.1507/endocrj.EJ16-0431
CAS
Article
PubMed
Google Scholar
Modi H, Johnson JD (2018) Folding mutations suppress early beta-cell proliferation. eLIFe 7:e43475. https://doi.org/10.7554/eLife.38519
Article
PubMed
PubMed Central
Google Scholar
Balboa D, Saarimäki-Vire J, Borshagovski D et al (2018) Insulin mutations impair beta-cell development in a patient-derived iPSC model of neonatal diabetes. eLIFe 7:e38519. https://doi.org/10.7554/eLife.38519
Article
PubMed
PubMed Central
Google Scholar
Riahi Y, Israeli T, Yeroslaviz R et al (2018) Inhibition of mTORC1 by ER stress impairs neonatal β-cell expansion and predisposes to diabetes in the Akita mouse. eLIFe 7(3):57–63. https://doi.org/10.7554/eLife.38472
Article
Google Scholar
Tsuchiya Y, Saito M, Kadokura H et al (2018) IRE1–XBP1 pathway regulates oxidative proinsulin folding in pancreatic β cells. J Cell Biol 217(4):1287–1301. https://doi.org/10.1083/jcb.201707143
CAS
Article
PubMed
PubMed Central
Google Scholar
Jang I, Pottekat A, Poothong J et al (2019) PDIA1/P4HB is required for efficient proinsulin maturation and ß cell health in response to diet induced obesity. eLIFe 8:e44528. https://doi.org/10.7554/eLife.44528.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Haataja L, Manickam N, Soliman A, Tsai B, Liu M, Arvan P (2016) Disulfide mispairing during proinsulin folding in the endoplasmic reticulum. Diabetes 65(4):1050–1060. https://doi.org/10.2337/db15-1345
CAS
Article
PubMed
PubMed Central
Google Scholar
Arunagiri A, Haataja L, Pottekat A et al (2019) Proinsulin misfolding is an early event in the progression to type 2 diabetes. eLIFe 8:e44532. https://doi.org/10.7554/eLife.44532.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Oslowski CM, Hara T, O’Sullivan-Murphy B et al (2012) Thioredoxin-interacting protein mediates ER stress-induced β cell death through initiation of the inflammasome. Cell Metab 16(2):265–273. https://doi.org/10.1016/j.cmet.2012.07.005
CAS
Article
PubMed
PubMed Central
Google Scholar
Yuan Q, Tang W, Zhang X et al (2012) Proinsulin atypical maturation and disposal induces extensive defects in mouse Ins2+/Akita β-cells. PLoS One 7(4):e35098. https://doi.org/10.1371/journal.pone.0035098
CAS
Article
PubMed
PubMed Central
Google Scholar
Chau GC, Im DU, Kang TM et al (2017) mTOR controls ChREBP transcriptional activity and pancreatic β cell survival under diabetic stress. J Cell Biol 216(7):2091–2105. https://doi.org/10.1083/jcb.201701085
CAS
Article
PubMed
PubMed Central
Google Scholar
Cnop M, Toivonen S, Igoillo-Esteve M, Salpea P (2017) Endoplasmic reticulum stress and eIF2α phosphorylation: the Achilles heel of pancreatic β cells. Mol Metab 6(9):1024–1039. https://doi.org/10.1016/j.molmet.2017.06.001
CAS
Article
PubMed
PubMed Central
Google Scholar
Sowers CR, Wang R, Bourne RA et al (2018) The protein kinase PERK/EIF2AK3 regulates proinsulin processing not via protein synthesis but by controlling endoplasmic reticulum chaperones. J Biol Chem 293(14):5134–5149. https://doi.org/10.1074/jbc.M117.813790
CAS
Article
PubMed
PubMed Central
Google Scholar
Marroqui L, Dos Santos RS, Op de beeck A et al (2017) Interferon-α mediates human beta cell HLA class I overexpression, endoplasmic reticulum stress and apoptosis, three hallmarks of early human type 1 diabetes. Diabetologia 60(4):656–667. https://doi.org/10.1007/s00125-016-4201-3
CAS
Article
PubMed
Google Scholar
Gonzalez-Duque S, Azoury ME, Colli ML et al (2018) Conventional and neo-antigenic peptides presented by β cells are targeted by circulating naïve CD8+ T cells in type 1 diabetic and healthy donors. Cell Metab 28(6):946–960. https://doi.org/10.1016/j.cmet.2018.07.007
CAS
Article
PubMed
Google Scholar
Verhagen J, Yusuf N, Smith EL et al (2019) Proinsulin peptide promotes autoimmune diabetes in a novel HLA-DR3-DQ2-transgenic murine model of spontaneous disease. Diabetologia 62(12):2252–2261. https://doi.org/10.1007/s00125-019-04994-8
CAS
Article
PubMed
PubMed Central
Google Scholar
Steiner DF, Docherty K, Carroll R (1984) Golgi/granule processing of peptide hormone and neuropeptide precursors: a minireview. J Cell Biochem 24(2):121–130. https://doi.org/10.1002/jcb.240240204
CAS
Article
PubMed
Google Scholar
Chen Y-C, Taylor AJ, Verchere CB (2018) Islet prohormone processing in health and disease. Diabetes Obes Metab 20:64–76. https://doi.org/10.1111/dom.13401
CAS
Article
PubMed
Google Scholar
Ramzy A, Asadi A, Kieffer TJ (2020) Revisiting proinsulin processing: evidence that human β-cells process proinsulin with prohormone convertase (PC) 1/3 but not PC2. Diabetes. https://doi.org/10.2337/db19-0276
Ward WK, LaCava EC, Paquette TL, Beard JC, Wallum BJ, Porte D (1987) Disproportionate elevation of immunoreactive proinsulin in type 2 (non-insulin-dependent) diabetes mellitus and in experimental insulin resistance. Diabetologia 30(9):698–702. https://doi.org/10.1007/BF00296991
CAS
Article
PubMed
Google Scholar
Truyen I, De Pauw P, Jørgensen PN et al (2005) Proinsulin levels and the proinsulin:C-peptide ratio complement autoantibody measurement for predicting type 1 diabetes. Diabetologia 48(11):2322–2329. https://doi.org/10.1007/s00125-005-1959-0
CAS
Article
PubMed
Google Scholar
Wasserfall C, Nick HS, Campbell-Thompson M et al (2017) Persistence of pancreatic insulin mRNA expression and proinsulin protein in type 1 diabetes pancreata. Cell Metab 26(3):568–575. https://doi.org/10.1016/j.cmet.2017.08.013
CAS
Article
PubMed
PubMed Central
Google Scholar
Jackson RS, Creemers JWM, Ohagi S et al (1997) Obesity and impaired prohormone processing associated with mutations in the human prohormone convertase 1 gene. Nat Genet 16(3):303–306. https://doi.org/10.1038/ng0797-303
CAS
Article
PubMed
Google Scholar
Chen H, Jawahar S, Qian Y et al (2001) Missense polymorphism in the human carboxypeptidase E gene alters enzymatic activity. Hum Mutat 18(2):120–131. https://doi.org/10.1002/humu.1161
Article
PubMed
Google Scholar
Taneera J, Fadista J, Ahlqvist E et al (2015) Identification of novel genes for glucose metabolism based upon expression pattern in human islets and effect on insulin secretion and glycemia. Hum Mol Genet 24(7):1945–1955. https://doi.org/10.1093/hmg/ddu610
CAS
Article
PubMed
Google Scholar
Jeffrey KD, Alejandro EU, Luciani DS et al (2008) Carboxypeptidase E mediates palmitate-induced β-cell ER stress and apoptosis. Proc Natl Acad Sci U S A 105(24):8452–8457. https://doi.org/10.1073/pnas.0711232105
Article
PubMed
PubMed Central
Google Scholar
Sims EK, Syed F, Nyalwidhe J et al (2019) Abnormalities in proinsulin processing in individuals with longstanding T1D. Transl Res 213:90–99. https://doi.org/10.1016/j.trsl.2019.08.001
CAS
Article
PubMed
Google Scholar
Sims EK, Bahnson HT, Nyalwidhe J et al (2019) Proinsulin secretion is a persistent feature of type 1 diabetes. Diabetes Care 42:258–264. https://doi.org/10.2337/dc17-2625
CAS
Article
PubMed
Google Scholar
Wijesekara N, Dai FF, Hardy AB et al (2010) Beta cell-specific Znt8 deletion in mice causes marked defects in insulin processing, crystallisation and secretion. Diabetologia 53(8):1656–1668. https://doi.org/10.1007/s00125-010-1733-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Rutter GA, Chimienti F (2015) SLC30A8 mutations in type 2 diabetes. Diabetologia 58(1):31–36. https://doi.org/10.1007/s00125-014-3405-7
CAS
Article
PubMed
Google Scholar
Dwivedi OP, Lehtovirta M, Hastoy B et al (2019) Loss of ZnT8 function protects against diabetes by enhanced insulin secretion. Nat Genet 51(11):1596–1606. https://doi.org/10.1038/s41588-019-0513-9
CAS
Article
PubMed
PubMed Central
Google Scholar
Weiss MA, Lawrence MC (2018) A thing of beauty: structure and function of insulin’s “aromatic triplet.”. Diabetes Obes Metab 20:51–63. https://doi.org/10.1111/dom.13402
CAS
Article
PubMed
PubMed Central
Google Scholar
Nakagawa SH, Tager HS (1986) Role of the phenylalanine B25 side chain in directing insulin interaction with its receptor. Steric and conformational effects. J Biol Chem 261(16):7332–7341
CAS
PubMed
Google Scholar
Dodson G, Steiner D (1998) The role of assembly in insulin’s biosynthesis. Curr Opin Struct Biol 8(2):189–194. https://doi.org/10.1016/S0959-440X(98)80037-7
CAS
Article
PubMed
Google Scholar
Yu Q, Canales A, Glover MS et al (2017) Targeted mass spectrometry approach enabled discovery of O-glycosylated insulin and related signaling peptides in mouse and human pancreatic islets. Anal Chem 89(17):9184–9191. https://doi.org/10.1021/acs.analchem.7b01926
CAS
Article
PubMed
PubMed Central
Google Scholar
Bryson B (2003) A short history of nearly everything. Random House, New York
Google Scholar