Bergman BC, Perreault L, Strauss A et al (2018) Intramuscular triglyceride synthesis: importance in muscle lipid partitioning in humans. Am J Physiol Endocrinol Metab 314(2):E152–E164. https://doi.org/10.1152/ajpendo.00142.2017
CAS
Article
PubMed
Google Scholar
Kiens B (2006) Skeletal muscle lipid metabolism in exercise and insulin resistance. Physiol Rev 86(1):205–243. https://doi.org/10.1152/physrev.00023.2004
CAS
Article
PubMed
Google Scholar
van Loon LJ, Greenhaff PL, Constantin-Teodosiu D, Saris WH, Wagenmakers AJ (2001) The effects of increasing exercise intensity on muscle fuel utilisation in humans. J Physiol 536(1):295–304. https://doi.org/10.1111/j.1469-7793.2001.00295.x
Article
PubMed
PubMed Central
Google Scholar
Goodpaster BH, He J, Watkins S, Kelley DE (2001) Skeletal muscle lipid content and insulin resistance: evidence for a paradox in endurance-trained athletes. J Clin Endocrinol Metab 86(12):5755–5761. https://doi.org/10.1210/jcem.86.12.8075
CAS
Article
PubMed
Google Scholar
Daemen S, Gemmink A, Brouwers B et al (2018) Distinct lipid droplet characteristics and distribution unmask the apparent contradiction of the athlete’s paradox. Mol Metab 17:71–81. https://doi.org/10.1016/j.molmet.2018.08.004
CAS
Article
PubMed
PubMed Central
Google Scholar
Gemmink A, Daemen S, Brouwers B et al (2018) Dissociation of intramyocellular lipid storage and insulin resistance in trained athletes and type 2 diabetes patients; involvement of perilipin 5? J Physiol 596(5):857–868. https://doi.org/10.1113/JP275182
CAS
Article
PubMed
Google Scholar
Boon H, Blaak EE, Saris WH, Keizer HA, Wagenmakers AJ, van Loon LJ (2007) Substrate source utilisation in long-term diagnosed type 2 diabetes patients at rest, and during exercise and subsequent recovery. Diabetologia 50(1):103–112. https://doi.org/10.1007/s00125-006-0482-2
CAS
Article
PubMed
Google Scholar
Chee C, Shannon CE, Burns A et al (2016) Relative contribution of intramyocellular lipid to whole-body fat oxidation is reduced with age but subsarcolemmal lipid accumulation and insulin resistance are only associated with overweight individuals. Diabetes 65(4):840–850. https://doi.org/10.2337/db15-1383
CAS
Article
PubMed
PubMed Central
Google Scholar
van Loon LJ, Manders RJ, Koopman R et al (2005) Inhibition of adipose tissue lipolysis increases intramuscular lipid use in type 2 diabetic patients. Diabetologia 48(10):2097–2107. https://doi.org/10.1007/s00125-005-1889-x
CAS
Article
PubMed
Google Scholar
Gemmink A, Goodpaster BH, Schrauwen P, Hesselink MKC (2017) Intramyocellular lipid droplets and insulin sensitivity, the human perspective. Biochim Biophys Acta Mol Cell Biol Lipids 1862(10 Pt B):1242–1249. https://doi.org/10.1016/j.bbalip.2017.07.010
CAS
Article
PubMed
Google Scholar
Nielsen J, Mogensen M, Vind BF et al (2010) Increased subsarcolemmal lipids in type 2 diabetes: effect of training on localization of lipids, mitochondria, and glycogen in sedentary human skeletal muscle. Am J Physiol Endocrinol Metab 298(3):E706–E713. https://doi.org/10.1152/ajpendo.00692.2009
CAS
Article
PubMed
Google Scholar
Feng YZ, Lund J, Li Y et al (2017) Loss of perilipin 2 in cultured myotubes enhances lipolysis and redirects the metabolic energy balance from glucose oxidation towards fatty acid oxidation. J Lipid Res 58(11):2147–2161. https://doi.org/10.1194/jlr.M079764
CAS
Article
PubMed
PubMed Central
Google Scholar
Covington JD, Noland RC, Hebert RC et al (2015) Perilipin 3 differentially regulates skeletal muscle lipid oxidation in active, sedentary and type 2 diabetic males. J Clin Endocrinol Metab 100(10):3683–3692. https://doi.org/10.1210/JC.2014-4125
CAS
Article
PubMed
PubMed Central
Google Scholar
Shepherd SO, Cocks M, Tipton KD et al (2013) Sprint interval and traditional endurance training increase net intramuscular triglyceride breakdown and expression of perilipin 2 and 5. J Physiol 591(3):657–675. https://doi.org/10.1113/jphysiol.2012.240952
CAS
Article
PubMed
Google Scholar
Shepherd SO, Cocks M, Tipton KD et al (2012) Preferential utilization of perilipin 2-associated intramuscular triglycerides during 1 h of moderate-intensity endurance-type exercise. Exp Physiol 97(8):970–980. https://doi.org/10.1113/expphysiol.2012.064592
CAS
Article
PubMed
Google Scholar
Koh HE, Nielsen J, Saltin B, Holmberg HC, Ortenblad N (2017) Pronounced limb and fibre type differences in subcellular lipid droplet content and distribution in elite skiers before and after exhaustive exercise. J Physiol 595(17):5781–5795. https://doi.org/10.1113/JP274462
CAS
Article
PubMed
PubMed Central
Google Scholar
Shaw CS, Jones DA, Wagenmakers AJ (2008) Network distribution of mitochondria and lipid droplets in human muscle fibres. Histochem Cell Biol 129(1):65–72. https://doi.org/10.1007/s00418-007-0349-8
CAS
Article
PubMed
Google Scholar
Gemmink A, Daemen S, Kuijpers HJH et al (2018) Super-resolution microscopy localizes perilipin 5 at lipid droplet-mitochondria interaction sites and at lipid droplets juxtaposing to perilipin 2. Biochim Biophys Acta Mol Cell Biol Lipids 1863(11):1423–1432. https://doi.org/10.1016/j.bbalip.2018.08.016
CAS
Article
PubMed
Google Scholar
Bleck CKE, Kim Y, Willingham TB, Glancy B (2018) Subcellular connectomic analyses of energy networks in striated muscle. Nat Commun 9(1):5111. https://doi.org/10.1038/s41467-018-07676-y
CAS
Article
PubMed
PubMed Central
Google Scholar
Benador IY, Veliova M, Mahdaviani K et al (2018) Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab 27(4):869–885. https://doi.org/10.1016/j.cmet.2018.03.003
CAS
Article
PubMed
PubMed Central
Google Scholar
Devries MC, Samjoo IA, Hamadeh MJ et al (2013) Endurance training modulates intramyocellular lipid compartmentalization and morphology in skeletal muscle of lean and obese women. J Clin Endocrinol Metab 98(12):4852–4862. https://doi.org/10.1210/jc.2013-2044
CAS
Article
PubMed
Google Scholar
Samjoo IA, Safdar A, Hamadeh MJ et al (2013) Markers of skeletal muscle mitochondrial function and lipid accumulation are moderately associated with the homeostasis model assessment index of insulin resistance in obese men. PLoS One 8(6):e66322. https://doi.org/10.1371/journal.pone.0066322
CAS
Article
PubMed
PubMed Central
Google Scholar
Devries MC, Lowther SA, Glover AW, Hamadeh MJ, Tarnopolsky MA (2007) IMCL area density, but not IMCL utilization, is higher in women during moderate-intensity endurance exercise, compared with men. Am J Physiol Regul Integr Comp Physiol 293(6):R2336–R2342. https://doi.org/10.1152/ajpregu.00510.2007
CAS
Article
PubMed
Google Scholar
Devries MC (2016) Sex-based differences in endurance exercise muscle metabolism: impact on exercise and nutritional strategies to optimize health and performance in women. Exp Physiol 101(2):243–249. https://doi.org/10.1113/EP085369
Article
PubMed
Google Scholar
Meex RC, Schrauwen-Hinderling VB, Moonen-Kornips E et al (2010) Restoration of muscle mitochondrial function and metabolic flexibility in type 2 diabetes by exercise training is paralleled by increased myocellular fat storage and improved insulin sensitivity. Diabetes 59(3):572–579. https://doi.org/10.2337/db09-1322
CAS
Article
PubMed
Google Scholar
Kelley DE, He J, Menshikova EV, Ritov VB (2002) Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51(10):2944–2950. https://doi.org/10.2337/diabetes.51.10.2944
CAS
Article
PubMed
Google Scholar
Phielix E, Schrauwen-Hinderling VB, Mensink M et al (2008) Lower intrinsic ADP-stimulated mitochondrial respiration underlies in vivo mitochondrial dysfunction in muscle of male type 2 diabetic patients. Diabetes 57(11):2943–2949. https://doi.org/10.2337/db08-0391
CAS
Article
PubMed
PubMed Central
Google Scholar
De Feyter HM, van den Broek NM, Praet SF, Nicolay K, van Loon LJ, Prompers JJ (2008) Early or advanced stage type 2 diabetes is not accompanied by in vivo skeletal muscle mitochondrial dysfunction. Eur J Endocrinol 158(5):643–653. https://doi.org/10.1530/eje-07-0756
Article
PubMed
Google Scholar
Pino MF, Stephens NA, Eroshkin AM et al (2019) Endurance training remodels skeletal muscle phospholipid composition and increases intrinsic mitochondrial respiration in men with type 2 diabetes. Physiol Genomics 51(11):586–595. https://doi.org/10.1152/physiolgenomics.00014.2019
Article
PubMed
Google Scholar
Bruce CR, Thrush AB, Mertz VA et al (2006) Endurance training in obese humans improves glucose tolerance and mitochondrial fatty acid oxidation and alters muscle lipid content. Am J Physiol Endocrinol Metab 291(1):E99–E107. https://doi.org/10.1152/ajpendo.00587.2005
CAS
Article
PubMed
Google Scholar
Schrauwen P, van Aggel-Leijssen DP, Hul G et al (2002) The effect of a 3-month low-intensity endurance training program on fat oxidation and acetyl-CoA carboxylase-2 expression. Diabetes 51(7):2220–2226. https://doi.org/10.2337/diabetes.51.7.2220
CAS
Article
PubMed
Google Scholar
He J, Goodpaster BH, Kelley DE (2004) Effects of weight loss and physical activity on muscle lipid content and droplet size. Obes Res 12(5):761–769. https://doi.org/10.1038/oby.2004.92
Article
PubMed
Google Scholar
Shepherd SO, Cocks M, Meikle PJ et al (2017) Lipid droplet remodelling and reduced muscle ceramides following sprint interval and moderate-intensity continuous exercise training in obese males. Int J Obes 41(12):1745–1754. https://doi.org/10.1038/ijo.2017.170
CAS
Article
Google Scholar
Tarnopolsky MA, Rennie CD, Robertshaw HA, Fedak-Tarnopolsky SN, Devries MC, Hamadeh MJ (2007) Influence of endurance exercise training and sex on intramyocellular lipid and mitochondrial ultrastructure, substrate use, and mitochondrial enzyme activity. Am J Physiol Regul Integr Comp Physiol 292(3):R1271–R1278. https://doi.org/10.1152/ajpregu.00472.2006
CAS
Article
PubMed
Google Scholar
Van Proeyen K, Szlufcik K, Nielens H et al (2011) High-fat diet overrules the effects of training on fiber-specific intramyocellular lipid utilization during exercise. J Appl Physiol 111(1):108–116. https://doi.org/10.1152/japplphysiol.01459.2010
Article
PubMed
Google Scholar
Koh HE, Ortenblad N, Winding KM, Hellsten Y, Mortensen SP, Nielsen J (2018) High-intensity interval, but not endurance, training induces muscle fiber type-specific subsarcolemmal lipid droplet size reduction in type 2 diabetic patients. Am J Physiol Endocrinol Metab 315(5):E872–E884. https://doi.org/10.1152/ajpendo.00161.2018
CAS
Article
PubMed
Google Scholar
Van Proeyen K, Szlufcik K, Nielens H, Ramaekers M, Hespel P (2011) Beneficial metabolic adaptations due to endurance exercise training in the fasted state. J Appl Physiol 110(1):236–245. https://doi.org/10.1152/japplphysiol.00907.2010
Article
PubMed
Google Scholar
Louche K, Badin PM, Montastier E et al (2013) Endurance exercise training up-regulates lipolytic proteins and reduces triglyceride content in skeletal muscle of obese subjects. J Clin Endocrinol Metab 98(12):4863–4871. https://doi.org/10.1210/jc.2013-2058
CAS
Article
PubMed
Google Scholar
Peters SJ, Samjoo IA, Devries MC, Stevic I, Robertshaw HA, Tarnopolsky MA (2012) Perilipin family (PLIN) proteins in human skeletal muscle: the effect of sex, obesity, and endurance training. Appl Physiol Nutr Metab 37(4):724–735. https://doi.org/10.1139/h2012-059
CAS
Article
PubMed
Google Scholar
Shaw CS, Shepherd SO, Wagenmakers AJ, Hansen D, Dendale P, van Loon LJ (2012) Prolonged exercise training increases intramuscular lipid content and perilipin 2 expression in type I muscle fibers of patients with type 2 diabetes. Am J Physiol Endocrinol Metab 303(9):E1158–E1165. https://doi.org/10.1152/ajpendo.00272.2012
CAS
Article
PubMed
PubMed Central
Google Scholar
Bilet L, Brouwers B, van Ewijk PA et al (2015) Acute exercise does not decrease liver fat in men with overweight or NAFLD. Sci Rep 5(1):9709. https://doi.org/10.1038/srep09709
CAS
Article
PubMed
PubMed Central
Google Scholar
De Bock K, Richter EA, Russell AP et al (2005) Exercise in the fasted state facilitates fibre type-specific intramyocellular lipid breakdown and stimulates glycogen resynthesis in humans. J Physiol 564(2):649–660. https://doi.org/10.1113/jphysiol.2005.083170
CAS
Article
PubMed
PubMed Central
Google Scholar
Van Proeyen K, Szlufcik K, Nielens H et al (2010) Training in the fasted state improves glucose tolerance during fat-rich diet. J Physiol 588(21):4289–4302. https://doi.org/10.1113/jphysiol.2010.196493
CAS
Article
PubMed
PubMed Central
Google Scholar
Stannard SR, Buckley AJ, Edge JA, Thompson MW (2010) Adaptations to skeletal muscle with endurance exercise training in the acutely fed versus overnight-fasted state. J Sci Med Sport 13(4):465–469. https://doi.org/10.1016/j.jsams.2010.03.002
Article
PubMed
Google Scholar
De Bock K, Derave W, Eijnde BO et al (2008) Effect of training in the fasted state on metabolic responses during exercise with carbohydrate intake. J Appl Physiol 104(4):1045–1055. https://doi.org/10.1152/japplphysiol.01195.2007
CAS
Article
PubMed
Google Scholar
Brouwers B, Hesselink MK, Schrauwen P, Schrauwen-Hinderling VB (2016) Effects of exercise training on intrahepatic lipid content in humans. Diabetologia 59(10):2068–2079. https://doi.org/10.1007/s00125-016-4037-x
CAS
Article
PubMed
PubMed Central
Google Scholar
Brouwers B, Schrauwen-Hinderling VB, Jelenik T et al (2018) Exercise training reduces intrahepatic lipid content in people with and people without nonalcoholic fatty liver. Am J Physiol Endocrinol Metab 314(2):E165–E173. https://doi.org/10.1152/ajpendo.00266.2017
CAS
Article
PubMed
Google Scholar
Bacchi E, Negri C, Targher G et al (2013) Both resistance training and aerobic training reduce hepatic fat content in type 2 diabetic subjects with nonalcoholic fatty liver disease (the RAED2 Randomized Trial). Hepatology 58(4):1287–1295. https://doi.org/10.1002/hep.26393
CAS
Article
PubMed
Google Scholar
Sullivan S, Kirk EP, Mittendorfer B, Patterson BW, Klein S (2012) Randomized trial of exercise effect on intrahepatic triglyceride content and lipid kinetics in nonalcoholic fatty liver disease. Hepatology 55(6):1738–1745. https://doi.org/10.1002/hep.25548
CAS
Article
PubMed
PubMed Central
Google Scholar
Alam S, Stolinski M, Pentecost C et al (2004) The effect of a six-month exercise program on very low-density lipoprotein apolipoprotein B secretion in type 2 diabetes. J Clin Endocrinol Metab 89(2):688–694. https://doi.org/10.1210/jc.2003-031036
CAS
Article
PubMed
Google Scholar
Haus JM, Solomon TP, Kelly KR et al (2013) Improved hepatic lipid composition following short-term exercise in nonalcoholic fatty liver disease. J Clin Endocrinol Metab 98(7):E1181–E1188. https://doi.org/10.1210/jc.2013-1229
CAS
Article
PubMed
PubMed Central
Google Scholar
Egger A, Kreis R, Allemann S et al (2013) The effect of aerobic exercise on intrahepatocellular and intramyocellular lipids in healthy subjects. PLoS One 8(8):e70865. https://doi.org/10.1371/journal.pone.0070865
CAS
Article
PubMed
PubMed Central
Google Scholar
Sondergaard E, Rahbek I, Sorensen LP et al (2011) Effects of exercise on VLDL-triglyceride oxidation and turnover. Am J Physiol Endocrinol Metab 300(5):E939–E944. https://doi.org/10.1152/ajpendo.00031.2011
CAS
Article
PubMed
PubMed Central
Google Scholar
Rabol R, Petersen KF, Dufour S, Flannery C, Shulman GI (2011) Reversal of muscle insulin resistance with exercise reduces postprandial hepatic de novo lipogenesis in insulin resistant individuals. Proc Natl Acad Sci U S A 108(33):13705–13709. https://doi.org/10.1073/pnas.1110105108
Article
PubMed
PubMed Central
Google Scholar