The results of our study indicate that, in patients with diabetes, the insulin dose is positively associated with the risk of malignant neoplasms; this applies both to human insulin and to insulin analogues. Compared with human insulin, this dose-dependent risk increase was higher for glargine (p < 0.0001) but not for lispro (p = 0.96) or aspart (p = 0.30).
In this pragmatic cohort study there were notable differences between the baseline characteristics of the treatment groups. This underlines the importance of accounting for confounding factors by applying a careful model-building process including relevant covariates and interaction terms.
At baseline, the patients in the glargine group seemed to be healthier than those in the human insulin group (fewer and shorter hospital stays), and the mean daily dose was significantly lower in the glargine group, leading to a significantly lower risk in the unadjusted analysis as well as in the analysis adjusted for age and sex, in which the modifying effects of dose were not taken into account. After also adjusting for dose, a significantly higher risk was observed for glargine relative to human insulin (Table 2). This means that glargine is associated with a higher risk of malignant neoplasms when the risk is adjusted for patients’ characteristics and the insulin dosage. Our findings are in line with the previously demonstrated in vitro mitogenic potency of glargine [10–12].
Our study has both strengths and limitations. The major strength of our study is the evaluation of a comprehensive data set from the largest German statutory health insurance fund, which is most likely to be representative of insulin-treated diabetic patients in Germany. Our access to these data enabled the analysis of almost 130,000 diabetic patients treated with insulin who were observed over a mean period of 1.63 years for malignant neoplasms under real-life conditions. For four of the 16 federal states in Germany, data were either missing or only partly available. This was due to technical reasons and, in our view, did not influence the representative nature of the database.
One major limitation of the study is the fact that patients were not randomised to treatment groups. Although the results were adjusted for all known and available confounders, potentially relevant factors such as insulin resistance, body mass index, smoking, social status and duration of diabetes were not available and therefore could not be considered in the analyses. However, to explain the observed dose-dependent risk increase in the glargine group, these potential confounders would have to be associated with both a higher cancer risk and a higher glargine dosage. For example, we have no evidence that the glargine group included more smokers or people from a lower socioeconomic class; in fact, at baseline, the glargine group generally seemed to be healthier than the human insulin group, and these findings were consistent when comparing subgroups of patients within the same dose range.
Although we tried to consider bias as much as the available data allowed, we cannot entirely exclude the possibility that some known or unknown factors could have influenced both the dose of human insulin and insulin analogues and the risk of cancer, especially given that the groups being compared were clinically dissimilar. Ultimately, only a randomised controlled trial could dispel these concerns. Such an analysis would also require the follow-up of large patient groups. In our study, the patient numbers were highest for human insulin and glargine. Hence, the conclusions are less robust for aspart and lispro.
Detection bias may have occurred because of the more frequent and longer hospitalisation periods of patients in the human insulin group compared with those in the glargine group. This could have resulted in relatively higher detection rates of neoplasms, particularly skin cancer (C44), as well as of precancerous lesions and in situ carcinoma (D00–D09). We took great care to avoid bias through prevalent but undiagnosed neoplasms when designing this study; hence, we excluded patients with the slightest suspicion of a malignant disease. We performed sensitivity analyses including and excluding these particular entities, and the main results remained unchanged. Furthermore, a higher detection rate of malignant neoplasms in the human insulin group would lead to an underestimation of the true effect, and the real difference between the incidence rates of the insulin and the glargine groups could be even greater than the one observed.
Another disparity is that more patients in the glargine group were treated with oral glucose-lowering agents. To take the effect of these agents into account, we adjusted for the factor ‘concomitant treatment with any oral glucose-lowering agent’ in the final Cox regression model and additionally for the specific subclasses of oral glucose-lowering agents in sensitivity analyses. In particular, we analysed a potential influence of metformin therapy, for which potential effects on cancer incidence have been previously discussed [24]. However, we found no evidence in our analyses of a substantial influence of metformin or any other oral glucose-lowering agent on the risk of morbidity or mortality.
A further potential limitation is prescription bias. Members of the human insulin group may have been treated with both short- and long-acting agents, whereas patients in the glargine group were treated only with glargine, and presumably had residual insulin secretion or received prescriptions for oral agents. Prescription bias could have affected the results if patients at a higher risk of malignant neoplasms had been prescribed glargine (at a higher dosage); however, the glargine group generally seemed to be healthier at baseline than the human insulin group (in all dose ranges).
Furthermore, we have no evidence that patients who still have residual insulin secretion are at a higher risk of malignant neoplasms than those who require treatment with human insulin with both short- and long-acting agents.
The fact that the members of the glargine group were treated only with glargine, i.e. did not receive additional treatment with a short-acting insulin, contributes to the observed higher average daily insulin dose in the human insulin group. This was not unexpected and was accounted for by the study design: we conducted an analysis based on real-life data representing the usual care of patients treated with glargine or human insulin. In addition, to avoid confounding, we explicitly aimed to compare exposure to human insulin and insulin analogues without overlapping or crossover effects. Therefore, we included patients who had been exposed to only one of the types of insulin investigated.
Taking these aspects into account, the slightly lower crude incidence rate of malignant neoplasms associated with glargine compared with human insulin seems to be at least partly a result of the different doses in the treatment groups.
One also has to take into account that glargine is being actively marketed promoting the added advantage of once-daily application in patients who have not reached their treatment goals with oral glucose-lowering agents alone. This might have led to an increased use of comparatively smaller doses of glargine.
We considered these dose differences in subgroup analyses, and even in these analyses (which only considered the most relevant covariates) and despite the lower statistical power, a significantly higher relative risk of cancer was observed for glargine in the high-dose range. Considering that the lower number of patients and events reduced the statistical power, it is not unexpected that we only found statistically significant differences in the subgroup that received doses in the highest range.
The observed results for the secondary outcome (mortality) require closer examination. We observed lower crude mortality rates in patients treated with glargine doses of <40 IU than in those treated with human insulin at the same doses (dose range <20 IU: 5.81 vs 8.83 per 100 patient-years; dose range 20 to 40 IU: 5.58 vs 9.67 per 100 patient-years).
However, we observed higher mortality rates in patients treated with high doses of glargine (>40 IU) than in patients treated with equivalent doses of human insulin (14.79 vs 9.17 per 100 patient-years). We carefully adjusted for the available covariates, took dose effects into account, and found a treatment–dose interaction caused by the higher mortality rate in patients treated with high doses. We have no indication that patients who were at high risk of dying were more likely to be treated with high doses of glargine than with human insulin, and the demographic data do not provide any plausible explanations for this finding. We are therefore cautious in interpreting these results and we would need further data to draw any valid conclusions.
Unfortunately, data on cause-specific mortality were not available and we do not know if causes of death differed between the groups. In this regard we would like to point out that an analysis of patients treated over a longer period of time would of course have been desirable; however, the available data were limited because of the framework of this study. We performed an additional analysis including only participants with a follow-up time (time between study entry and end of study) of at least 1.5 years, and found consistent results regarding the dose-dependent risk of malignant neoplasms and mortality.
One of the strengths of our study is that the patients were treated with a single type of insulin, which avoids confounding between treatments. We think that it would be difficult to treat diabetic patients over several years with only one insulin analogue. Moreover, such a study protocol would in itself create additional confounders.
In our opinion, this issue should be investigated using a prospective study design, and a reliable assessment of causes of death should be performed by a clinical review committee [25]. We plan to conduct additional analyses to further explore the effects of human insulin and insulin analogues on specific cancer entities.
To our knowledge, the risk of cancer in patients with diabetes has so far never been compared between patients treated with human insulin and those treated with insulin analogues. Despite the relatively fragile nature of the data, the results of our cohort study support safety concerns surrounding the mitogenic and potential tumour growth-promoting properties of glargine. The findings underline the necessity for a prospective, randomised, controlled, long-term study that is designed and sufficiently powered to evaluate insulin analogues with regard to their effects on morbidity and mortality in patients with diabetes. Taking into account the fact that a non-randomised study cannot prove that the association between glargine and cancer is causal, we still think that our results may have practical implications. In our view, the decision for or against treatment with glargine has to be made on an individual basis after providing comprehensive information to patients about the limited long-term data available and the uncertain potential benefits and harms. We think that, especially in type 2 diabetes mellitus, the potential harm of glargine must be weighed against rather minor potential therapeutic advantages [18, 26, 27]. In general, before the widespread introduction of a new drug that is to be taken for decades, we think that an evaluation of its patient-relevant beneficial and harmful effects should be conducted under controlled conditions for at least several years. Because such studies are rare and not required for market approval, patients and physicians will still often have to make treatment decisions in the face of uncertainty.