Participants
The Utrecht Diabetic Encephalopathy Study aims to identify determinants of cognitive impairment in patients with diabetes [6]. Therefore, patients were not selected for the presence or absence of diabetic complications, co-morbid conditions (e.g. hypertension) or exposure to other risk factors (e.g. smoking). For inclusion patients had to be 55 to 80 years of age, functionally independent and speakers of Dutch, with a minimal diabetes duration of 1 year. Exclusion criteria for all participants were: a psychiatric or neurological disorder that could influence cognitive functioning; a history of alcohol or substance abuse and dementia; and, for the control group, a fasting blood glucose ≥7.0 mmol/l [20]. Participants with a history of stroke who were still fully functionally independent were classified as eligible. To increase statistical power for within-group analyses in the type 2 diabetes group, twice as many patients as controls were enrolled.
Overall, 122 patients with type 2 diabetes (age 56–80 years) and 56 controls (age 57–78 years) were included in the present study. Patients were recruited through their general practitioners; controls were spouses or acquaintances of the patients. Groups were comparable for age, sex and educational level. The study was approved by the local medical ethics committee and each participant signed an informed consent form. All participants underwent a 2 day protocol, which included brain MRI, a neurological and neuropsychological examination, retinal photography and ultrasonography of the carotid arteries. Fasting blood and urine samples were collected and blood pressure was recorded. In one control person and two type 2 diabetes patients it was not possible to perform the neuropsychological examination. Similarly, MRIs could not be obtained in five controls and nine type 2 diabetes patients, mostly due to MRI contraindications (claustrophobia, pacemaker).
Neuropsychological examination
The neuropsychological examination tapped the major cognitive domains in verbal and non-verbal ways. Eleven tasks were administered in a fixed order, taking about 90 min to complete. These tasks were divided into five cognitive domains, as described previously [6]: (1) attention and executive functioning; (2) information processing speed; (3) memory; (4) abstract reasoning; and (5) visuoconstruction. For analysis the test scores were standardised into z scores for each of the five domains, based on the means of the whole group. The mean performance from each participant across the domains is expressed as the composite cognitive z score.
Premorbid IQ was assessed with the Dutch version of the National Adult Reading Test. To control for possible effects of mood disturbances or affective disorders a Beck depression inventory [21] was performed.
Brain MRI
The MRI investigation (1.5 T; Philips Medical Systems, Best, the Netherlands) consisted of an axial T1-weighted and an axial T2 and T2 fluid-attenuating inverse recovery (FLAIR) scan (TR/TE/TI: 6000/100/2000, field of view 230 mm, matrix 180 × 256, slice thickness 4.0 mm, contiguous, 38 slices).
WML were rated according to the Scheltens scale [22] with slight modifications [6]. Periventricular WML (PWML) were rated on a severity scale (0–2) at the frontal and occipital horns and the body of the lateral ventricle on both sides (sum score 0–12). For the rating of deep (subcortical) WML (DWML) the brain was divided into six regions: frontal, parietal, occipital, temporal, basal ganglia and infra-tentorial. Per region the size and number of WML were rated on a scale ranging from 0 to 6. The total score thus ranged from 0 to 36.
Cortical atrophy was evaluated by the frontal interhemispheric fissure ratio and the Sylvian fissure ratio [23]. Subcortical atrophy was evaluated by the bifrontal ratio and by the bicaudate ratio [23]. These ratios were converted to z scores: a cortical atrophy z score (mean of z frontal fissure ratio and z Sylvian fissure ratio) and a subcortical atrophy z score (mean of z bicaudate ratio and z bifrontal ratio).
All MRI scans were rated by two investigators (S. M. Manschot and G. J. Biessels) blinded for presence or absence of diabetes or other characteristics. In case of disagreement of more than 1 point on the WML scales in a particular region or more than 5 mm (actual size) on any of the atrophy measurements (2 mm for fissure widths), a consensus reading was held (0% of PWML, 4% of DWML and 4% of atrophy ratio readings were thus affected). In all other cases the readings of both raters were averaged.
Diabetes characteristics and glucose metabolism
A standardised questionnaire addressed medical history, medication use, diabetes duration and the life-time occurrence of severe hypoglycaemic episodes (defined as episode of hypoglycaemia severe enough to require the assistance of another person, hospitalisation or emergency room visit). BMI was calculated as weight divided by height square.
Blood was drawn by venepuncture to assess HbA1c, fasting glucose and insulin levels. Insulin resistance was estimated with the homeostasis model assessment of insulin resistance (HOMA-IR). The HOMA-IR is calculated as fasting glucose (mmol/l) × fasting insulin (mU/l)/22.5 [24]. Because insulin was expressed in pmol/l we used the formula fasting glucose (mmol/l) × fasting insulin (pmol/l)/(22.5 × 6.945) [24].
Vascular risk factors
Blood pressure was measured at home at nine fixed time points during the day with an automatic blood pressure machine (705CP; Omron, Mannheim, Germany). These measurements were averaged. In the primary analysis hypertension was defined as a mean systolic blood pressure >160 mmHg or a mean diastolic pressure >95 mmHg or the use of antihypertensive medication. In a second analysis cut-off values for systolic and diastolic blood pressure of 140 and 90 mmHg were used.
Smoking habits were classified as ‘current’ and ‘past or never’. Total cholesterol, HDL-cholesterol, LDL-cholesterol and triacylglycerol were assessed in a fasting venous blood sample.
Microvascular disease
Following mydriasis with phenylephrine and tropicamide, single-field photographs were taken of both eyes with a 50-degree retinal camera (Zeiss FF 450, Carl Zeiss B.V., Sliedrecht, the Netherlands), centred on the macula. Retinopathy was rated on slides, according to the diabetic retinopathy severity scale (grades 1–7) as used in the Wisconsin Epidemiologic Study of Diabetic Retinopathy [25]. Photocoagulated eyes were rated at grade 5 or higher (severe non-proliferative diabetic retinopathy). Ratings were performed by two investigators, blinded to patient characteristics. In case of disagreement (2%), a third investigator was involved and a consensus was made. Retinopathy was defined as a grade of 1.5 or higher.
Neuropathy was rated with the Toronto Clinical Neuropathy Scoring System [26], with a slight modification. A sensory test for temperature was not performed, so that the maximum score was 18 points (severe polyneuropathy) instead of 19. A score of 0–5 indicated no neuropathy, 6–8 indicated mild neuropathy, 9–11 moderate neuropathy and ≥12 severe neuropathy. Neuropathy was defined as a score of ≥6.
Urine was collected overnight. Albuminuria was defined as microalbuminuria (albumin 0.03–0.25 g/l) or macroalbuminuria (albumin 0.25 g/l or positive protein dipstick test).
Macrovascular disease
Several composite measures of macrovascular disease were defined. ‘Any peripheral arterial disease’ was defined as current complaints of intermittent claudication (assessed with the Rose questionnaire [27]) or a history of surgery or endovascular treatment for arterial disease of the legs or the abdominal aorta. ‘Ischaemic heart disease’ was defined as a history of myocardial infarction or surgery or endovascular treatment for coronary artery disease. ‘Any vascular event’ was defined as a history of myocardial infarction or stroke, or a history of operative or endovascular treatment for coronary, carotid or peripheral (legs, abdominal aorta) artery disease.
Brain infarcts were rated on brain MRI, by location (cortical and subcortical), size (lacunar [<1.5 cm] or large) and number. A lesion was considered an infarct if it was hypo-intense on T1 and FLAIR images and if its appearance was unlike a perivascular space.
Carotid intima-media thickness (CIMT) was measured in both common carotid arteries as described previously [28] with an ATL Ultramark 9 (Advanced Technology Laboratories, Bothell, WA, USA) equipped with a 10-MHz linear-array transducer. Scanning was performed at three different longitudinal projections (anterior-oblique, lateral and posterior-oblique). The CIMT was measured in a 1 cm section proximal to the beginning of the dilatation of the carotid bulb in all three projections, in both carotid arteries. CIMT was calculated as the average of these six measurements. CIMT readings were not available in six type 2 diabetes patients and one person in the control group.
Statistical analysis
The differences between patients and the control group were examined with t test for means, Mann–Whitney U was used for non-parametric data and χ2 test for proportions. In the text and tables, data are shown as mean ± SD or proportions, unless stated otherwise.
Within the type 2 diabetes population, cognition (five domains) and brain MRI findings (cortical and subcortical atrophy z scores, PWML, DMWL and infarcts) were related to the different measures of glucose, insulin and lipid metabolism, and to microvascular complications and macrovascular disease by linear or logistic regression analyses, adjusting for age, sex and estimated IQ. In order to limit the number of analyses the ‘composite cognitive z score’ was used as the primary cognitive outcome measure in the regression analyses. For significant associations, post hoc tests were performed per domain. Secondary analyses were performed with information processing speed, the domain most markedly affected by type 2 diabetes. The results were essentially the same as for the composite cognitive z score (data not shown).
In the regression analyses, B values >0 indicate that a variable is associated with more severe MR abnormalities; for cognition B values <0 indicate that a variable is associated with more pronounced performance impairments. For the between and within-group analyses, p < 0.05 was considered statistically significant. All variables that reached a significance level of p ≤ 0.1 in the adjusted univariate risk factor analyses were included in a multivariate model that also included age, sex and estimated IQ.