Skip to main content
Log in

Downregulation of the expression of subgenomic chromosome A7 genes promotes plant height in resynthesized allopolyploid Brassica napus

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Homoeolog expression bias and the gene dosage effect induce downregulation of genes on chromosome A7, causing a significant increase in the plant height of resynthesized allopolyploid Brassica napus.

Abstract

Gene expression levels in allopolyploid plants are not equivalent to the simple average of the expression levels in the parents and are associated with several non-additive expression phenomena, including homoeolog expression bias. However, hardly any information is available on the effect of homoeolog expression bias on traits. Here, we studied the effects of gene expression-related characteristics on agronomic traits using six isogenic resynthesized Brassica napus lines across the first ten generations. We found a group of genes located on chromosome A7 whose expression levels were significantly negatively correlated with plant height. They were expressed at significantly lower levels than their homoeologous genes, owing to allopolyploidy rather than inheritance from parents. Homoeolog expression bias resulted in resynthesized allopolyploids with a plant height similar to their female Brassica oleracea parent, but significantly higher than that of the male Brassica rapa parent. Notably, aneuploid lines carrying monosomic and trisomic chromosome A7 had the highest and lowest plant heights, respectively, due to changes in the expression bias of homoeologous genes because of alterations in the gene dosage. These findings suggest that the downregulation of the expression of homoeologous genes on a single chromosome can result in the partial improvement of traits to a significant extent in the nascent allopolyploid B. napus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Raw data from this project are available on the NCBI Sequence Read Archive Project PRJNA577908.

References

  • Birchler JA (2014) Facts and artifacts in studies of gene expression in aneuploids and sex chromosomes. Chromosoma 123:459–469

    Article  CAS  PubMed  Google Scholar 

  • Bird KA, Niederhuth CE, Ou S, Gehan M, Pires JC, Xiong Z, VanBuren R, Edger PP (2020) Replaying the evolutionary tape to investigate subgenome dominance in allopolyploid Brassica napus. New Phytol 230(1):354–371

    Article  Google Scholar 

  • Boeva V, Popova T, Bleakley K, Chiche P, Cappo J, Schleiermacher G, Janoueix-Lerosey I, Delattre O, Barillot E (2012) Control-FREEC: a tool for assessing copy number and allelic content using next-generation sequencing data. Bioinformatics 28:423–425

    Article  CAS  PubMed  Google Scholar 

  • Bus A, Korber N, Snowdon RJ, Stich B (2011) Patterns of molecular variation in a species-wide germplasm set of Brassica napus. Theor Appl Genet 123:1413–1423

    Article  PubMed  Google Scholar 

  • Cao Y, Zhao K, Xu J, Wu L, Hao F, Sun M, Dong J, Chao G, Zhang H, Gong X, Chen Y, Chen C, Qian W, Pires JC, Edger PP, Xiong Z (2023) Genome balance and dosage effect drive allopolyploid formation in Brassica. Proc Natl Acad Sci U S A 120:e2217672120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chalhoub B, Denoeud F, Liu SY, Parkin IAP, Tang HB, Wang XY, Chiquet J, Belcram H, Tong CB, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao MX, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan GY, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VHD, Chalabi S, Hu Q, Fan CC, Tollenaere R, Lu YH, Battail C, Shen JX, Sidebottom CHD, Wang XF, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu ZS, Sun FM, Lim YP, Lyons E, Town CD, Bancroft I, Wang XW, Meng JL, Ma JX, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou YM, Hua W, Sharpe AG, Paterson AH, Guan CY, Wincker P (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  ADS  Google Scholar 

  • Chen ZJ (2007) Genetic and epigenetic mechanisms for gene expression and phenotypic variation in plant polyploids. Annu Rev Plant Biol 58:377–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34:i884–i890

    Article  PubMed  PubMed Central  Google Scholar 

  • Comai L (2005) The advantages and disadvantages of being polyploid. Nat Rev Genet 6:836–846

    Article  CAS  PubMed  Google Scholar 

  • Doyle JJ, Paterson AH, Soltis DE, Wendel JF (2008) Evolutionary genetics of genome merger and doubling in plants. Annu Rev Genet 42:443–461

    Article  CAS  PubMed  Google Scholar 

  • Duy D, Stube R, Wanner G, Philippar K (2011) The chloroplast permease PIC1 regulates plant growth and development by directing homeostasis and transport of iron. Plant Physiol 155:1709–1722

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endler JA (1986) Natural selection in the wild. Princeton University Press

    Google Scholar 

  • Fan S, Zhang L, Tang M, Cai Y, Liu J, Liu H, Liu J, Terzaghi W, Wang H, Hua W, Zheng M (2021) CRISPR/Cas9-targeted mutagenesis of the BnaA03.BP gene confers semi-dwarf and compact architecture to rapeseed (Brassica napus L.). Plant Biotechnol J 19:2383–2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaeta RT, Pires JC, Iniguez-Luy F, Leon E, Osborn TC (2007) Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. Plant Cell 19:3403–3417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grover CE, Gallagher JP, Szadkowski EP, Yoo MJ, Flagel LE, Wendel JF (2012) Homoeolog expression bias and expression level dominance in allopolyploids. New Phytol 196:966–971

    Article  CAS  PubMed  Google Scholar 

  • Henry IM, Dilkes BP, Tyagi AP, Lin HY, Comai L (2009) Dosage and parent-of-origin effects shaping aneuploid swarms in A. thaliana. Heredity (edinb) 103:458–468

    Article  CAS  PubMed  Google Scholar 

  • Henry IM, Dilkes BP, Miller ES, Burkart-Waco D, Comai L (2010) Phenotypic consequences of aneuploidy in Arabidopsis thaliana. Genetics 186:1231–1245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu J, Chen B, Zhao J, Zhang F, Xie T, Xu K, Gao G, Yan G, Li H, Li L, Ji G, An H, Li H, Huang Q, Zhang M, Wu J, Song W, Zhang X, Luo Y, Chris Pires J, Batley J, Tian S, Wu X (2022) Genomic selection and genetic architecture of agronomic traits during modern rapeseed breeding. Nat Genet 54:694–704

    Article  CAS  PubMed  Google Scholar 

  • Hurgobin B, Golicz AA, Bayer PE, Chan CKK, Tirnaz S, Dolatabadian A, Schiessl SV, Samans B, Montenegro JD, Parkin IAP, Pires JC, Chalhoub B, King GJ, Snowdon R, Batley J, Edwards D (2018) Homoeologous exchange is a major cause of gene presence/absence variation in the amphidiploid Brassica napus. Plant Biotechnol J 16:1265–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langfelder P, Horvath S (2008) WGCNA: an R package for weighted correlation network analysis. BMC Bioinform 9(1):1–13

    Article  Google Scholar 

  • Leitch AR, Leitch IJ (2008) Perspective-genomic plasticity and the diversity of polyploid plants. Science 320:481–483

    Article  CAS  PubMed  ADS  Google Scholar 

  • Levin DA (1983) Polyploidy and novelty in flowering plants. Am Nat 122:1–25

    Article  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing S (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Li A, Liu D, Wu J, Zhao X, Hao M, Geng S, Yan J, Jiang X, Zhang L, Wu J (2014) mRNA and small RNA transcriptomes reveal insights into dynamic homoeolog regulation of allopolyploid heterosis in nascent hexaploid wheat. Plant Cell 26:1878–1900

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li F, Chen BY, Xu K, Gao GZ, Yan GX, Qiao JW, Li J, Li H, Li LX, Xiao X, Zhang TY, Nishio T, Wu XM (2016) A genome-wide association study of plant height and primary branch number in rapeseed (Brassica napus). Plant Sci 242:169–177

    Article  CAS  PubMed  Google Scholar 

  • Li M, Wang R, Wu X, Wang J (2020) Homoeolog expression bias and expression level dominance (ELD) in four tissues of natural allotetraploid Brassica napus. BMC Genom 21:330

    Article  CAS  Google Scholar 

  • Li M, Sun W, Wang F, Wu X, Wang J (2021) Asymmetric epigenetic modification and homoeolog expression bias in the establishment and evolution of allopolyploid Brassica napus. New Phytol 232:898–913

    Article  CAS  PubMed  Google Scholar 

  • Li M, Hu M, Xiao Y, Wu X, Wang J (2022) The activation of gene expression and alternative splicing in the formation and evolution of allopolyploid Brassica napus. Hortic Res 9:uhab075

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Li M, Wu X, Wang J (2023) The characteristics of mRNA m(6)A methylomes in allopolyploid Brassica napus and its diploid progenitors. Hortic Res 10:uhac230

    Article  PubMed  Google Scholar 

  • Lu K, Wei L, Li X, Wang Y, Wu J, Liu M, Zhang C, Chen Z, Xiao Z, Jian H, Cheng F, Zhang K, Du H, Cheng X, Qu C, Qian W, Liu L, Wang R, Zou Q, Ying J, Xu X, Mei J, Liang Y, Chai YR, Tang Z, Wan H, Ni Y, He Y, Lin N, Fan Y, Sun W, Li NN, Zhou G, Zheng H, Wang X, Paterson AH, Li J (2019) Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun 10:1154

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Otto SP (2007) The evolutionary consequences of polyploidy. Cell 131:452–462

    Article  CAS  PubMed  Google Scholar 

  • Patro R, Duggal G, Love MI, Irizarry RA, Kingsford C (2017) Salmon provides fast and bias-aware quantification of transcript expression. Nat Methods 14:417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pertea M, Kim D, Pertea GM, Leek JT, Salzberg SL (2016) Transcript-level expression analysis of RNA-seq experiments with HISAT, StringTie and Ballgown. Nat Protoc 11:1650–1667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peterson R, Slovin JP, Chen C (2010) A simplified method for differential staining of aborted and non-aborted pollen grains. Int J Plant Biol 1:e13

    Article  Google Scholar 

  • Powell JJ, Fitzgerald TL, Stiller J, Berkman PJ, Gardiner DM, Manners JM, Henry RJ, Kazan K (2017) The defence-associated transcriptome of hexaploid wheat displays homoeolog expression and induction bias. Plant Biotechnol J 15:533–543

    Article  CAS  PubMed  Google Scholar 

  • Ramsey J, Schemske DW (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annu Rev Ecol Syst 29:467–501

    Article  Google Scholar 

  • Shen YS, Xiang Y, Xu ES, Ge XH, Li ZY (2018) Major co-localized QTL for plant height, branch initiation height, stem diameter, and flowering time in an alien introgression derived Brassica napus DH population. Front Plant Sci 9:390

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi JQ, Li RY, Qiu D, Jiang CC, Long Y, Morgan C, Bancroft I, Zhao JY, Meng JL (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song Q, Chen ZJ (2015) Epigenetic and developmental regulation in plant polyploids. Curr Opin Plant Biol 24:101–109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song JM, Guan Z, Hu J, Guo C, Yang Z, Wang S, Liu D, Wang B, Lu S, Zhou R, Xie WZ, Cheng Y, Zhang Y, Liu K, Yang QY, Chen LL, Guo L (2020) Eight high-quality genomes reveal pan-genome architecture and ecotype differentiation of Brassica napus. Nat Plants 6:34–45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun CM, Wang BQ, Yan L, Hu KN, Liu S, Zhou YM, Guan CY, Zhang ZQ, Li JN, Zhang JF, Chen S, Wen J, Ma CZ, Tu JX, Shen JX, Fu TD, Yi B (2016) Genome-wide association study provides insight into the genetic control of plant height in rapeseed (Brassica napus L.). Front Plant Sci 7:1102

    Article  PubMed  PubMed Central  Google Scholar 

  • Thomson FJ, Moles AT, Auld TD, Kingsford RT (2011) Seed dispersal distance is more strongly correlated with plant height than with seed mass. J Ecol 99:1299–1307

    Article  Google Scholar 

  • Udall JA, Quijada PA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet 113:597–609

    Article  CAS  PubMed  Google Scholar 

  • Williams BR, Amon A (2009) Aneuploidy: cancer’s fatal flaw? Cancer Res 69:5289–5291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Worland A, Law C (1985) Aneuploidy in semi dwarf wheat varieties. Euphytica 34:317–327

    Article  Google Scholar 

  • Wu J, Lin L, Xu M, Chen P, Liu D, Sun Q, Ran L, Wang Y (2018) Homoeolog expression bias and expression level dominance in resynthesized allopolyploid Brassica napus. BMC Genom 19:586

    Article  Google Scholar 

  • Wu Y, Lin F, Zhou Y, Wang J, Sun S, Wang B, Zhang Z, Li G, Lin X, Wang X (2020) Genomic mosaicism due to homoeologous exchange generates extensive phenotypic diversity in nascent allopolyploids. Natl Sci Rev 8(5):nwaa277

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiong ZY, Pires JC (2011) Karyotype and identification of all homoeologous chromosomes of allopolyploid Brassica napus and its diploid progenitors. Genetics 187:37–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong ZY, Gaeta RT, Pires JC (2011) Homoeologous shuffling and chromosome compensation maintain genome balance in resynthesized allopolyploid Brassica napus. Proc Natl Acad Sci USA 108:7908–7913

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Xiong Z, Gaeta RT, Edger PP, Cao Y, Zhao K, Zhang S, Pires JC (2021) Chromosome inheritance and meiotic stability in allopolyploid Brassica napus. G3 11:jkaa011

    Article  CAS  PubMed  Google Scholar 

  • Yoo MJ, Szadkowski E, Wendel JF (2013) Homoeolog expression bias and expression level dominance in allopolyploid cotton. Heredity (edinb) 110:171–180

    Article  CAS  PubMed  Google Scholar 

  • Yu GC, Wang LG, Han YY, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. Omics-a J Integr Biol 16:284–287

    Article  CAS  Google Scholar 

  • Zeng D, Guan J, Luo J, Zhao L, Li Y, Chen W, Zhang L, Ning S, Yuan Z, Li A, Zheng Y, Mao L, Liu D, Hao M (2020) A transcriptomic view of the ability of nascent hexaploid wheat to tolerate aneuploidy. BMC Plant Biol 20:97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang A, Li N, Gong L, Gou X, Wang B, Deng X, Li C, Dong Q, Zhang H, Liu B (2017) Global analysis of gene expression in response to whole-chromosome aneuploidy in hexaploid wheat. Plant Physiol 175:828–847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YS, Chen JJ, Cao YM, Duan JX, Cai XD (2020) Induction of tetraploids in ‘Red Flash’ caladium using colchicine and oryzalin: morphological, cytological, photosynthetic and chilling tolerance analysis. Sci Hortic-Amst 272:109524

    Article  CAS  Google Scholar 

  • Zhao K, Jin N, Madadi M, Wang Y, Wu L, Xu Z, Wang J, Dong J, Tang SW, Wang Y, Peng L, Xiong Z (2022) Incomplete genome doubling enables to consistently enhance plant growth for maximum biomass production by altering multiple transcript co-expression networks in potato. Theor Appl Genet 135:461–472

    Article  CAS  PubMed  Google Scholar 

  • Zhao K, Bai Y, Zhang Q, Zhao Z, Cao Y, Yang L, Wang N, Xu J, Wang B, Wu L, Gong X, Lin T, Wang Y, Wang W, Cai X, Yin Y, Xiong Z. Karyotyping of aneuploid and polyploid plants from low coverage whole-genome resequencing. BMC Plant Biol. 2023;23(1):630. https://doi.org/10.1186/s12870-023-04650-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng M, Peng C, Liu HF, Tang M, Yang HL, Li XK, Liu JL, Sun XC, Wang XF, Xu JF, Hua W, Wang HZ (2017) Genome-wide association study reveals candidate genes for control of plant height, branch initiation height and branch number in rapeseed (Brassica napus L.). Front Plant Sci 8:1246

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu B, Shao Y, Pan Q, Ge X, Li Z (2015) Genome-wide gene expression perturbation induced by loss of C2 chromosome in allotetraploid Brassica napus L. Front Plant Sci 6:763

    Article  PubMed  PubMed Central  Google Scholar 

  • Zu P, Schiestl FP (2017) The effects of becoming taller: direct and pleiotropic effects of artificial selection on plant height in Brassica rapa. Plant J 89:1009–1019

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (grant number 32070556 and 31871239), US National Science Foundation (2029959), Inner Mongolia Key Technology Research Plan (2020GG0080), and Inner Mongolia Natural Science Foundation (2020ZD09). The work was carried out at IMHPC (Inner Mongolia High Performance Computing Public Service Platform), and the calculations were performed on The Light of Huhhot. We appreciate the linguistic assistance provided by TopEdit (www.topeditsci.com) during the preparation of this manuscript.

Funding

Funding was provided by Natural Science Foundation of Inner Mongolia, (Grant Number: 2020ZD09).

Author information

Authors and Affiliations

Authors

Contributions

KZ and ZX designed the research. KZ, YB, YY, CL, LW, TL, LF, and YW performed data analysis. JD and JX completed the cytogenetic experiment. KZ and JX wrote the manuscript. PPE and ZX finalized the manuscript.

Corresponding authors

Correspondence to Patrick P. Edger or Zhiyong Xiong.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Isobel AP Parkin.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

122_2023_4510_MOESM1_ESM.tif

Supplementary file1 (TIF 44073 KB) Fig. S1 Cytogenetic karyotyping of EL100S10, EL200S5, and EL300S10. (a-c) For karyotype analysis, the A chromosomes are shown in lanes 1 and 2, and the C chromosomes are shown in lanes 3 and 4. The first round of FISH included 45S rDNA (white), 5S rDNA (yellow), BAC clone KBrB072L17 (green), and KBrH092N24 (red) probes, and the hybridization results are shown in lanes 1 and 3. The second round of FISH included CentBr1 (white), CentBr2 (green), and BAC BNIH 123L05 (red) probes containing C genome-specific repeated sequences, and the hybridization results are shown in lanes 2 and 4. (a) EL100S10 is an aneuploid with three A7, and one homoeologous C6 and two homoeologous C7 chromosomes. EL200S5 (b) and EL300S10 (c) are aneuploids with one A7 and two corresponding homoeologous C chromosomes.

122_2023_4510_MOESM2_ESM.tif

Supplementary file2 (TIF 44708 KB) Fig. S2 Cytogenetic karyotyping of EL200S1, EL1100S1, and EL1100S5. (a-c) For karyotype analysis, the A chromosomes are shown in lanes 1 and 2, and the C chromosomes are shown in lanes 3 and 4. The first round of FISH included 45S rDNA (white), 5S rDNA (yellow), BAC clone KBrB072L17 (green), and KBrH092N24 (red) probes, and the hybridization results are shown in lanes 1 and 3. The second round of FISH included CentBr1 (white), CentBr2 (green), and BAC BNIH 123L05 (red) probes containing C genome-specific repeated sequences, and the hybridization results are shown in lanes 2 and 4. (a) EL200S1 is an euploid with two normal A7 and two corresponding homoeologous C chromosomes. EL1100S1 (b) and EL1100S5 (c) are aneuploids with two normal A7 and two corresponding homoeologous C chromosomes.

Supplementary file3 (DOCX 18 KB)

Supplementary file4 (XLSX 18 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, K., Dong, J., Xu, J. et al. Downregulation of the expression of subgenomic chromosome A7 genes promotes plant height in resynthesized allopolyploid Brassica napus. Theor Appl Genet 137, 11 (2024). https://doi.org/10.1007/s00122-023-04510-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04510-y

Navigation