Skip to main content
Log in

Genome sequence analysis provides insights into the mode of 2n egg formation in Solanum malmeanum

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

Our genomic investigation confirms the mechanism of 2n eggs formation in S. malmeanum and aid in optimizing the use of wild germplasm.

Abstract

Wild potatoes are a valuable source of agronomic traits. However, substantial reproductive barriers limit gene flow into cultivated species. 2n gametes are instrumental in preventing endosperm abortion caused by genetic imbalances in the endosperm. However, little is known about the molecular mechanisms underlying the formation of 2n gametes. Here, the wild species Solanum malmeanum Bitter (2x, 1EBN, endosperm balance number) was used in inter- and intrapoloid crosses with other Solanum species, with viable seeds being produced only when S. malmeanum was used as the female parent to cross the 2EBN Solanum genus and with the likely involvement of 2n gametes. Subsequently, we substantiated the formation of 2n eggs in S. malmeanum using fluorescence in situ hybridization (FISH) and genomic sequencing technology. Additionally, the transmission rate of maternal heterozygous polymorphism sites was assessed from a genomic perspective to analyze the mode of 2n egg formation in S. malmeanum × S. tuberosum and S. malmeanum × S. chacoense crosses; each cross acquired an average of 31.12% and 22.79% maternal sites, respectively. This confirmed that 2n egg formation in S. malmeanum attributed to second-division restitution (SDR) coupled with the occurrence of exchange events. The high-throughput sequencing technology used in this study has strong advantages over traditional cytological analyses. Furthermore, S. malmeanum, which has a variety of excellent traits not available from present cultivated potato genepool, has received little research attention and has successfully achieved gene flow in cultivated species in the current study. These findings will facilitate the understanding and optimization of wild germplasm utilization in potatoes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

The datasets generated and analyzed during this study are available from the corresponding author upon request. Genome sequencing data have been deposited in the NCBI SRA database under BioProject PRJNA933358.

References

  • Amundson KR, Ordonez B, Santayana M, Tan EH, Henry IM, Mihovilovich E, Bonierbale M, Comai L (2020) Genomic outcomes of haploid induction crosses in potato (Solanum tuberosum L.). Genetics 214:369–380

    Article  CAS  PubMed  Google Scholar 

  • Amundson KR, Ordonez B, Santayana M, Nganga ML, Henry IM, Bonierbale M, Khan A, Tan EH, Comai L (2021) Rare instances of haploid inducer DNA in potato dihaploids and ploidy-dependent genome instability. Plant Cell 33:2149–2163

    Article  PubMed  PubMed Central  Google Scholar 

  • Aversano R, Contaldi F, Ercolano MR, Grosso V, Iorizzo M, Tatino F, Xumerle L, Dal Molin A, Avanzato C, Ferrarini A, Delledonne M, Sanseverino W, Cigliano RA, Capella-Gutierrez S, Gabaldon T, Frusciante L, Bradeen JM, Carputo D (2015) The Solanum commersonii genome sequence provides insights into adaptation to stress conditions and genome evolution of wild potato relatives. Plant Cell 27:954–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barone A, Gebhardt C, Frusciante L (1995) Heterozygosity in 2n gametes of potato evaluated by RFLP markers. Theor Appl Genet 91:98–104

    Article  CAS  PubMed  Google Scholar 

  • Bethke PC, Halterman DA, Jansky S (2017) Are we getting better at using wild potato species in light of new tools? Crop Sci 57:1241–1258

    Article  Google Scholar 

  • Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borisjuk N, Hemleben V (1993) Nucleotide sequence of the potato rDNA intergenic spacer. Plant Mol Biol 21:381–384

    Article  CAS  PubMed  Google Scholar 

  • Camadro EL, Carputo D, Peloquin SJ (2004) Substitutes for genome differentiation in tuber-bearing Solanum: interspecific pollen-pistil incompatibility, nuclear-cytoplasmic male sterility, and endosperm. Theor Appl Genet 109:1369–1376

    Article  CAS  PubMed  Google Scholar 

  • Cara N, Ferrer MS, Masuelli RW, Camadro EL, Marfil CF (2019) Epigenetic consequences of interploidal hybridisation in synthetic and natural interspecific potato hybrids. New Phytol 222:1981–1993

    Article  CAS  PubMed  Google Scholar 

  • Carputo D, Barone A, Cardi T, Sebastiano A, Frusciante L, Peloquin SJ (1997) Endosperm balance number manipulation for direct in vivo germplasm introgression to potato from a sexually isolated relative (Solanum commersonii Dun.). Proc Natl Acad Sci U S A 94:12013–12017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carputo D, Monti L, Werner JE, Frusciante L (1999) Uses and usefulness of endosperm balance number. Theor Appl Genet 98:478–484

    Article  Google Scholar 

  • Carputo D, Barone A, Frusciante L (2000) 2n gametes in the potato: essential ingredients for breeding and germplasm transfer. Theor Appl Genet 101:805–813

    Article  Google Scholar 

  • Carvallo MA, Pino MT, Jeknic Z, Zou C, Doherty CJ, Shiu SH, Chen TH, Thomashow MF (2011) A comparison of the low temperature transcriptomes and CBF regulons of three plant species that differ in freezing tolerance: Solanum commersonii, Solanum tuberosum, and Arabidopsis thaliana. J Exp Bot 62:3807–3819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cuenca J, Froelicher Y, Aleza P, Juarez J, Navarro L, Ollitrault P (2011) Multilocus half-tetrad analysis and centromere mapping in citrus: evidence of SDR mechanism for 2n megagametophyte production and partial chiasma interference in mandarin cv “Fortune.” Heredity (edinb) 107:462–470

    Article  CAS  PubMed  Google Scholar 

  • Dinu II, Hayes RJ, Kynast RG, Phillips RL, Thill CA (2005) Novel inter-series hybrids in Solanum, section Petota. Theor Appl Genet 110:403–415

    Article  CAS  PubMed  Google Scholar 

  • Dong J, Li J, Deng G, Chen C, Jing S, Song B, Cai X (2023) QTL analysis for low temperature tolerance of wild potato species Solanum commersonii in natural field trials. Sci Hortic 310:111689

    Article  CAS  Google Scholar 

  • Douches DS, Quiros CF (1987) Use of 4x–2x crosses to determine gene–centromere map distances of isozyme loci in Solanum species. Genome 29:519–527

    Article  Google Scholar 

  • Du M, Wang T, Lian Q, Zhang X, Xin G, Pu Y, Bryan GJ, Qi J (2021) Developing a new model system for potato genetics by androgenesis. J Integr Plant Biol 63:628–633

    Article  CAS  PubMed  Google Scholar 

  • Ehlenfeldt MK, Hanneman RE Jr (1992) Endosperm dosage relationships among Lycopersicon species. Theor Appl Genet 83:367–372

    Article  CAS  PubMed  Google Scholar 

  • Gaiero P, Mazzella C, Vilaró F, Speranza P, de Jong H (2017) Pairing analysis and in situ hybridisation reveal autopolyploid-like behaviour in Solanum commersonii × S. tuberosum (potato) interspecific hybrids. Euphytica 213:137–151

    Article  Google Scholar 

  • Gong Z, Wu Y, Koblizkova A, Torres GA, Wang K, Iovene M, Neumann P, Zhang W, Novak P, Buell CR, Macas J, Jiang J (2012) Repeatless and repeat-based centromeres in potato: implications for centromere evolution. Plant Cell 24:3559–3574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanneman RE (1993) Assignment of endosperm balance numbers to the tuber-bearing and Soalnums and their close non-tuber-bearing relatives. Euphytica 74:19–25

    Article  Google Scholar 

  • Hardigan MA, Laimbeer FPE, Newton L, Crisovan E, Hamilton JP, Vaillancourt B, Wiegert-Rininger K, Wood JC, Douches DS, Farre EM, Veilleux RE, Buell CR (2017) Genome diversity of tuber-bearing Solanum uncovers complex evolutionary history and targets of domestication in the cultivated potato. Proc Natl Acad Sci U S A 114:E9999–E10008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Liu J, Torres GA, Zhang H, Jiang J, Xie C (2013) Interstitial telomeric repeats are enriched in the centromeres of chromosomes in Solanum species. Chromosome Res 21:5–13

    Article  CAS  PubMed  Google Scholar 

  • He F, Xu J, Jian Y, Duan S, Hu J, Jin L, Li G (2022) Overexpression of galactinol synthase 1 from Solanum commersonii (ScGolS1) confers freezing tolerance in transgenic potato. Horticult Plant J. https://doi.org/10.1016/j.hpj.2022.05.005

    Article  Google Scholar 

  • Henry IM, Zinkgraf MS, Groover AT, Comai L (2015) A system for dosage-based functional genomics in poplar. Plant Cell 27:2370–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hofvander P, Andreasson E, Andersson M (2022) Potato trait development going fast-forward with genome editing. Trends Genet 38:218–221

    Article  CAS  PubMed  Google Scholar 

  • Jackson S, Hanneman R (1999) Crossability between cultivated and wild tuber-and non-tuber-bearing Solanums. Euphytica 109:51–67

    Article  Google Scholar 

  • Jansky S (2006) Overcoming hybridization barriers in potato. Plant Breed 125:1–12

    Article  Google Scholar 

  • Jansky SH, Dempewolf H, Camadro EL, Simon R, Zimnoch-Guzowska E, Bisognin DA, Bonierbale M (2013) A case for crop wild relative preservation and use in potato. Crop Sci 53:746–754

    Article  Google Scholar 

  • Johnston SA, Hanneman RE (1980) Support of the endosperm balance number hypothesis utilizing some tuber-bearing Solanum species. Am Potato J 57:7–14

    Article  Google Scholar 

  • Johnston SA, Hanneman RE Jr (1982) Manipulations of endosperm balance number overcome crossing barriers between diploid solanum species. Science 217:446–448

    Article  CAS  PubMed  Google Scholar 

  • Johnston SA, den Nijs TP, Peloquin SJ, Hanneman RE Jr (1980) The significance of genic balance to endosperm development in interspecific crosses. Theor Appl Genet 57:5–9

    Article  CAS  PubMed  Google Scholar 

  • Katsiotis A, Hanneman RE Jr, Forsberg RA (1995) Endosperm Balance Number and the polar-nuclei activation hypotheses for endosperm development in interspecific crosses of Solanaceae and Gramineae, respectively. Theor Appl Genet 91:848–855

    Article  CAS  PubMed  Google Scholar 

  • Kou S, Chen L, Tu W, Scossa F, Wang Y, Liu J, Fernie AR, Song B, Xie C (2018) The arginine decarboxylase gene ADC1, associated to the putrescine pathway, plays an important role in potato cold-acclimated freezing tolerance as revealed by transcriptome and metabolome analyses. Plant J 96:1283–1298

    Article  CAS  PubMed  Google Scholar 

  • Lafon-Placette C, Kohler C (2016) Endosperm-based postzygotic hybridization barriers: developmental mechanisms and evolutionary drivers. Mol Ecol 25:2620–2629

    Article  PubMed  Google Scholar 

  • Lafon-Placette C, Johannessen IM, Hornslien KS, Ali MF, Bjerkan KN, Bramsiepe J, Glockle BM, Rebernig CA, Brysting AK, Grini PE, Kohler C (2017) Endosperm-based hybridization barriers explain the pattern of gene flow between Arabidopsis lyrata and Arabidopsis arenosa in central Europe. Proc Natl Acad Sci U S A 114:E1027–E1035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leblanc O, Pointe C, Hernandez M (2002) Cell cycle progression during endosperm development in Zea mays depends on parental dosage effects. Plant J 32:1057–1066

    Article  CAS  PubMed  Google Scholar 

  • Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R (2009) Genome Project Data Processing S The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Y, Colleoni C, Zhang J, Liang Q, Hu Y, Ruess H, Simon R, Liu Y, Liu H, Yu G, Schmitt E, Ponitzki C, Liu G, Huang H, Zhan F, Chen L, Huang Y, Spooner D, Huang B (2018) Genomic analyses yield markers for identifying agronomically important genes in potato. Mol Plant 11:473–484

    Article  CAS  PubMed  Google Scholar 

  • Lin BY (1984) Ploidy barrier to endosperm development in maize. Genetics 107:103–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Gu W, Yang Y, Lu B, Wang F, Zhang B, Bi J (2021) Promoting potato as staple food can reduce the carbon–land–water impacts of crops in China. Nature Food 2:570–577

    Article  PubMed  Google Scholar 

  • Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 17:10–12

    Article  Google Scholar 

  • Mason AS, Rousseau-Gueutin M, Morice J, Bayer PE, Besharat N, Cousin A, Pradhan A, Parkin IA, Chevre AM, Batley J, Nelson MN (2016) Centromere locations in Brassica A and C genomes revealed through half-tetrad analysis. Genetics 202:513–523

    Article  CAS  PubMed  Google Scholar 

  • Masuelli RW, Camadro EL, Mendiburu AO (1992) 2n gametes in Solanum commersonii and cytological mechanisms of triplandroid formation in triploid hybrids of Solanum commersonii × Solanum gourlayi. Genome 35:864–869

    Article  Google Scholar 

  • McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, Garimella K, Altshuler D, Gabriel S, Daly M, DePristo MA (2010) The genome analysis toolkit: a mapreduce framework for analyzing next-generation DNA sequencing data. Genome Res 20:1297–1303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolao R, Gaiero P, Castro CM, Heiden G (2023) Solanum malmeanum, a promising wild relative for potato breeding. Front Plant Sci. https://doi.org/10.3389/fpls.2022.1046702

    Article  PubMed  PubMed Central  Google Scholar 

  • Ortiz R, Ehlenfeldt MK (1992) The importance of endosperm balance number in potato breeding and the evolution of tuber-bearing Solanum species. Euphytica 60:105–113

    Article  Google Scholar 

  • Park TH, Kim JB, Hutten RC, van Eck HJ, Jacobsen E, Visser RG (2007) Genetic positioning of centromeres using half-tetrad analysis in a 4x–2x cross population of potato. Genetics 176:85–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parrott WA, Smith RR (1986) Evidence for the existence of endosperm balance number in the true clovers (Trifolium spp.). Can J Genet Cytol 28:581–586

    Article  Google Scholar 

  • Peloquin SJ, Boiteux LS, Simon PW, Jansky SH (2008) A chromosome-specific estimate of transmission of heterozygosity by 2n gametes in potato. J Hered 99:177–181

    Article  CAS  PubMed  Google Scholar 

  • Pendinen G, Spooner DM, Jiang J, Gavrilenko T (2012) Genomic in situ hybridization reveals both auto- and allopolyploid origins of different North and Central American hexaploid potato (Solanum sect. Petota) species. Genome 55:407–515

    Article  CAS  PubMed  Google Scholar 

  • Pham GM, Hamilton JP, Wood JC, Burke JT, Zhao H, Vaillancourt B, Ou S, Jiang J, Buell CR (2020) Construction of a chromosome-scale long-read reference genome assembly for potato. Gigascience 9:1–11

    Article  CAS  Google Scholar 

  • Sarkar S (1996) Anecdotal, historical and critical commentaries on genetics. Genetics 142:655–660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott RJ, Spielman M, Bailey J, Dickinson HG (1998) Parent-of-origin effects on seed development in Arabidopsis thaliana. Development 125:3329–3341

    Article  CAS  PubMed  Google Scholar 

  • Spooner DM (1990) The potato: evolution, biodiversity and genetic resources. Am Potato J 67:733–735

    Article  Google Scholar 

  • Spooner DM, McLean K, Ramsay G, Waugh R, Bryan GJ (2005) A single domestication for potato based on multilocus amplified fragment length polymorphism genotyping. Proc Natl Acad Sci U S A 102:14694–14699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spooner DM, Ghislain M, Simon R, Jansky SH, Gavrilenko T (2014) Systematics, diversity, genetics, and evolution of wild and cultivated potatoes. Bot Rev 80:283–383

    Article  Google Scholar 

  • Summers D, Grun P (1981) Reproductive isolation barriers to gene exchange between Solanum Chacoense and S. Commersonii (Solanaceae). Am J Bot 68:1240–1248

    Article  Google Scholar 

  • Tang D, Jia Y, Zhang J, Li H, Cheng L, Wang P, Bao Z, Liu Z, Feng S, Zhu X, Li D, Zhu G, Wang H, Zhou Y, Zhou Y, Bryan GJ, Buell CR, Zhang C, Huang S (2022) Genome evolution and diversity of wild and cultivated potatoes. Nature 606:535–541

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thorvaldsdottir H, Robinson JT, Mesirov JP (2013) Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration. Brief Bioinform 14:178–192

    Article  CAS  PubMed  Google Scholar 

  • Tiwari JK, Devi S, Ali N, Luthra SK, Kumar V, Bhardwaj V, Singh RK, Rawat S, Chakrabarti SK (2017) Progress in somatic hybridization research in potato during the past 40 years. Plant Cell Tiss Org 132:225–238

    Article  Google Scholar 

  • Tomé LGO, Davide LC, Pinto CABP, Alves AA, Salgado CC (2007) Pollen viability and meiotic analysis of Solanum commersonii commersonii Dun., Solanum commersonii malmeanum Bitt. and Solanum tuberosum L. Crop Breed Appl Biot 7:387–393

    Article  Google Scholar 

  • Tu W, Dong J, Zou Y, Zhao Q, Wang H, Ying J, Wu J, Du J, Cai X, Song B (2021) Interspecific potato somatic hybrids between Solanum malmeanum and S. tuberosum provide valuable resources for freezing-tolerance breeding. Plant Cell Tiss Org 147:73–83

    Article  CAS  Google Scholar 

  • Wang H, Cheng Z, Wang B, Dong J, Ye W, Yu Y, Liu T, Cai X, Song B, Liu J (2020) Combining genome composition and differential gene expression analyses reveals that SmPGH1 contributes to bacterial wilt resistance in somatic hybrids. Plant Cell Rep 39:1235–1248

    Article  CAS  PubMed  Google Scholar 

  • Watanabe K, Peloquin SJ (1991) The occurrence and frequency of 2n pollen in 2x, 4x, and 6x wild, tuber-bearing Solanum species from Mexico, and Central and South America. Theor Appl Genet 82:621–626

    Article  CAS  PubMed  Google Scholar 

  • Werner JE, Peloquin SJ (1987) Frequency and mechanisms of 2n egg formation in haploid tuberosum-wild species F1 hybrids. Am Potato J 64:641–654

    Article  Google Scholar 

  • Wolters PJ, Wouters D, Kromhout EJ, Huigen DJ, Visser RGF, Vleeshouwers V (2021) Qualitative and quantitative resistance against early blight introgressed in potato. Biology (basel) 10:892

    CAS  PubMed  Google Scholar 

  • Xie KD, Wang XP, Biswas MK, Liang WJ, Xu Q, Grosser JW, Guo WW (2014) 2n megagametophyte formed via SDR contributes to tetraploidization in polyembryonic “Nadorcott” tangor crossed by citrus allotetraploids. Plant Cell Rep 33:1641–1650

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Yang Z, Tang D, Zhu Y, Wang P, Li D, Zhu G, Xiong X, Shang Y, Li C, Huang S (2021) Genome design of hybrid potato. Cell 184:3873–3883

    Article  CAS  PubMed  Google Scholar 

  • Zlesak DC, Thill CA (2004) Foliar resistance to Phytophthora infestans (Mont.) de Bary (US-8) in 13 Mexican and South American Solanum species having EBNs of 1, 2, and 4 and implications for breeding. Am J Potato Res 81:421–429

    Article  Google Scholar 

Download references

Acknowledgements

This project was funded by the Key-Area Research and Development Program of Guangdong Province (2022B0202060001), the China Agriculture Research System of MOF and MARA (CARS-09-P07), the High-level Nurturing Project of Huanggang Normal University (202211404). We sincerely appreciate the help of Prof. Yuan Li (Northwest A&F University, Yangling, China) in revising the revised manuscript. We greatly appreciate Bo Wang (Genoseq Technology Co. Ltd, Wuhan, China) for providing generous advice for data analysis. We also thank Wiley Editing Services (https://cn.wileyeditingservices.com) for its English language editing service during the preparation of this manuscript.

Funding

This study was funded by the Key-Area Research and Development Program of Guangdong Province (2022B0202060001); the China Agriculture Research System of MOF and MARA (CARS-09-P07); the High-level Nurturing Project of Huanggang Normal University (202211404).

Author information

Authors and Affiliations

Authors

Contributions

BS and XC conceived and designed the research. JD and WT carried out most of the experiments, analyzed the results, and wrote the manuscript. HW conducted the FISH experiment. YZ analyzed the high-throughput data. YL and JY assisted in ploidy analysis experiments. QZ and JW performed freezing tolerance tests. BS and TL revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Botao Song.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Esther van der Knaap.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 6928 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Tu, W., Wang, H. et al. Genome sequence analysis provides insights into the mode of 2n egg formation in Solanum malmeanum. Theor Appl Genet 136, 157 (2023). https://doi.org/10.1007/s00122-023-04406-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04406-x

Navigation