Skip to main content
Log in

Fine mapping of BnDM1—the gene regulating indeterminate inflorescence in Brassica napus

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A candidate gene Bndm1 related to determinate inflorescence was mapped to a 128-kb interval on C02 in Brassica napus.

Abstract

Brassica napus plants with determinate inflorescence exhibit improved traits in field production, such as lower plant height, improved lodging resistance, and consistent maturity. Compared to plants with indeterminate inflorescence, such features are favorable for mechanized harvesting techniques. Here, using a natural mutant 6138 with determinate inflorescence, it is demonstrated that determinate inflorescence reduces plant height significantly without affecting thousand-grain weight and yield per plant. Determinacy was regulated by a single recessive gene, Bndm1. Using a combination of SNP arrays and map-based cloning, we mapped the locus of determinacy to a 128-kb region on C02. Based on sequence comparisons and the reported functions of candidate genes in this region, we predicted BnaC02.knu (a homolog of KNU in Arabidopsis) as a possible candidate gene of Bndm1 for controlling determinate inflorescence. We found a 623-bp deletion in a region upstream of the KNU promoter in the mutant. This deletion led to the significant overexpression of BnaC02.knu in the mutant compared to that in the ZS11 line. The correlation between this deletion and determinate inflorescence was examined in natural populations. The results indicated that the deletion affected the normal transcription of BnaC02.knu in the plants with determinate inflorescence and played an important role in maintaining flower development. This study presents as a new material for optimizing plant architecture and breeding novel canola varieties suitable for mechanized production. Moreover, our findings provide a theoretical basis for analyzing the molecular mechanisms underlying the formation of determinate inflorescence in B. napus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  • Amasino R (2010) Seasonal and developmental timing of flowering. Plant J 61:1001–1013

    Article  CAS  PubMed  Google Scholar 

  • Amaya I, Ratcliffe OJ, Bradley DJ (1999) Expression of CENTRORADIALIS (CEN) and CEN-like genes in tobacco reveals a conserved mechanism controlling phase change in diverse species. Plant Cell 11:1405–1418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angadi SV, Cutforth HW, Mcconkey BG, Gan Y (2003) Yield adjustment by canola grown at different plant populations under semiarid conditions. Crop Sci 43:1358–1366

    Article  Google Scholar 

  • Armstrong EL, Nicol HI (1991) Reducing height and lodging in rapeseed with growth regulators. Aust J Exp Agric 31:245–250

    Article  CAS  Google Scholar 

  • Banga SS, Hegde DM (2007) Genetic manipulations for oilseeds improvement-conventional. Chang Global Veg Oils Scenar Issues Chall before India 17:34

    Google Scholar 

  • Benlloch R, Berbel A, Serrano-Mislata A, Madueño F (2007) Floral initiation and inflorescence architecture: a comparative view. Ann Bot 100:659–676

    Article  PubMed  PubMed Central  Google Scholar 

  • Benlloch R, Berbel A, Ali L, Gohari G, Millán T, Madueño F (2015) Genetic control of inflorescence architecture in legumes. Front Plant Sci 6:543

    Article  PubMed  PubMed Central  Google Scholar 

  • Bradley D, Carpenter R, Copsey L, Vincent C, Rothstein S, Coen E (1996) Control of inflorescence architecture in Antirrhinum. Nature 379:791–797

    Article  CAS  PubMed  Google Scholar 

  • Bradley D, Ratcliffe O, Vincent C, Carpenter R, Coen E (1997) Inflorescence commitment and architecture in Arabidopsis. Science 275:80–83

    Article  CAS  PubMed  Google Scholar 

  • Busov VB, Johannes E, Whetten RW, Sederoff RR, Spiker SL, Lanz-Garcia C, Goldfarb B (2004) An auxin-inducible gene from loblolly pine (Pinus taeda L.) is differentially expressed in mature and juvenile-phase shoots and encodes a putative transmembrane protein. Planta 218:916–927

    Article  CAS  PubMed  Google Scholar 

  • Busov VB, Brunner AM, Strauss SH (2008) Genes for control of plant stature and form. New Phytol 177:589–607

    Article  CAS  PubMed  Google Scholar 

  • Cai G, Yang Q, Chen H, Yang Q, Zhang C, Fan C, Zhou Y (2016) Genetic dissection of plant architecture and yield-related traits in Brassica napus. Sci Rep 6:21625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cao X, He Z, Guo L, Liu X (2015) Epigenetic mechanisms are critical for the regulation of WUSCHEL expression in floral meristems. Plant Physiol 168:1189–1196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Li G, Krom N, Tang Y, Wen J (2021) Genetic regulation of flowering time and inflorescence architecture by MtFDa and MtFTa1 in Medicago truncatula. Plant Physiol 185:161–178

    Article  CAS  PubMed  Google Scholar 

  • Clark SE, Running MP, Meyerowitz EM (1993) CLAVATA1, a regulator of meristem and flower development in Arabidopsis. Development 119:397–418

    Article  CAS  PubMed  Google Scholar 

  • Clarke WE, Higgins EE, Plieske J, Wieseke R, Sidebottom C, Khedikar Y, Batley J, Edwards D, Meng J, Li R, Lawley CT, Pauquet J, Laga B, Cheung W, Iniguez-Luy F, Dyrszka E, Rae S, Stich B, Snowdon RJ, Sharpe AG, Ganal MW, Parkin IA (2016) A high-density SNP genotyping array for Brassica napus and its ancestral diploid species based on optimised selection of single-locus markers in the allotetraploid genome. Theor Appl Genet 129:1887–1899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clarkson JP, Phelps K, Whipps JM, Young CS, Smith JA, Watling M (2004) Forecasting sclerotinia disease on lettuce: toward developing a prediction model for carpogenic germination of sclerotia. Phytopathology 94:268–279

    Article  PubMed  Google Scholar 

  • Denancé N, Ranocha P, Oria N, Barlet X, Rivière MP, Yadeta KA, Hoffmann L, Perreau F, Clément G, Maia Grondard A (2013) Arabidopsis wat1 (walls are thin1)-mediated resistance to the bacterial vascular pathogen, Ralstonia solanacearum, is accompanied by cross-regulation of salicylic acid and tryptophan metabolism. Plant J 73:225–239

    Article  PubMed  Google Scholar 

  • Doyle J, Doyle JL (1990) Isolation of Plant DNA from fresh tissue. Focus (San Francisco, Calif.) 12:13–15

  • Ferraz LCL, Café Filho AC, Nasser LCB, Azevedo J (1999) Effects of soil moisture, organic matter and grass mulching on the carpogenic germination of sclerotia and infection of bean by Sclerotinia sclerotiorum. Plant Pathol 48:77–82

    Article  Google Scholar 

  • Foisset N, Delourme R, Barret P, Renard M (1995) Molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus. Theor Appl Genet 91:756–761

    Article  CAS  PubMed  Google Scholar 

  • Foucher F, Morin J, Courtiade J, Cadioux S, Ellis N, Banfield MJ, Rameau C (2003) Determinate and late flowering are two terminal flower1/centroradialis homologs that control two distinct phases of flowering initiation and development in pea. Plant Cell 15:2742–2754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu TD (2008) On research and application of heterosis in rapeseed. Agric Sci Technol Equip 5:10–11

    Google Scholar 

  • Fu T, Zhou Y (2013) Progress and future development of hybrid rapeseed in China. Eng Sci 5:13–18

    Google Scholar 

  • Gross T, Broholm S, Becker A (2018) CRABS CLAW acts as a bifunctional transcription factor in flower development. Front Plant Sci 9:835

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo L, Cao X, Liu Y, Li J, Li Y, Li D, Zhang K, Gao C, Dong A, Liu X (2018) A chromatin loop represses WUSCHEL expression in Arabidopsis. Plant J 94:1083–1097

    Article  CAS  PubMed  Google Scholar 

  • Hu K, Xu K, Wen J, Yi B, Tu J (2019) Helitron distribution in Brassicaceae and whole Genome Helitron density as a character for distinguishing plant species. BMC Bioinform 1:1–20

    CAS  Google Scholar 

  • Huijser P, Schmid M (2011) The control of developmental phase transitions in plants. Development 138:4117–4129

    Article  CAS  PubMed  Google Scholar 

  • Islam N, Evans EJ (1994) Influence of lodging and nitrogen rate on the yield and yield attributes of oilseed rape (Brassica napus L.). Theor Appl Genet 88:530–534

    Article  CAS  PubMed  Google Scholar 

  • Jensen CS, Salchert K, Nielsen KK (2001) A TERMINAL FLOWER1-like gene from perennial ryegrass involved in floral transition and axillary meristem identity. Plant Physiol 125:1517–1528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaur H, Banga SS (2015) Discovery and mapping of Brassica juncea Sdt 1 gene associated with determinate plant growth habit. Theor Appl Genet 128:235–245

    Article  CAS  PubMed  Google Scholar 

  • Kaur H, Gupta S, Kumar N, Akhatar J, Banga SS (2014) Progression of molecular and phenotypic diversification in resynthesized Brassica juncea (L) gene pool with determinate inflorescence. Euphytica 199:325–338

    Article  CAS  Google Scholar 

  • Khan S, Anwar S, Kuai J, Ullah S, Fahad S, Zhou G (2017) Optimization of nitrogen rate and planting density for improving yield, nitrogen use efficiency, and lodging resistance in oilseed rape. Front Plant Sci 8:532

    Article  PubMed  PubMed Central  Google Scholar 

  • Koch S, Dunker S, Kleinhenz B, Rhrig M, Tiedemann AV (2007) A crop loss-related forecasting model for sclerotinia stem rot in winter oilseed rape. Phytopathology 97:1186–1194

    Article  CAS  PubMed  Google Scholar 

  • Kotoda N, Wada M (2005) MdTFL1, a TFL1-like gene of apple, retards the transition from the vegetative to reproductive phase in transgenic Arabidopsis. Plant Sci 168:95–104

    Article  CAS  Google Scholar 

  • Kuai J, Sun Y, Zhou M, Zhang P, Zuo Q, Wu J, Zhou G (2016) The effect of nitrogen application and planting density on the radiation use efficiency and the stem lignin metabolism in rapeseed (Brassica napus L.). Field Crops Res 199:89–98

    Article  Google Scholar 

  • Kwaśniewska K, Breathnach C, Fitzsimons C, Goslin K, Thomson B, Beegan J, Finocchio A, Prunet N, Ó Maoiléidigh DS, Wellmer F (2021) Expression of KNUCKLES in the stem cell domain is required for its function in the control of floral meristem activity in Arabidopsis. Front Plant Sci 12:704351

    Article  PubMed  PubMed Central  Google Scholar 

  • Lenhard M, Bohnert A, Jurgens G, Laux T (2001) Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105:805–814

    Article  CAS  PubMed  Google Scholar 

  • Li X, Chen L, Hong M, Zhang Y, Zu F, Wen J, Yi B, Ma C, Shen J, Tu J, Fu T (2012) A large insertion in bHLH transcription factor BrTT8 resulting in yellow seed coat in Brassica rapa. PLoS ONE 7:e44145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Fu X, Guo L, Huang Z, Li Y, Liu Y, He Z, Cao X, Ma X, Zhao M, Zhu G, Xiao L, Wang H, Chen X, Liu R, Liu X (2016) FAR-RED ELONGATED HYPOCOTYL3 activates SEPALLATA2 but inhibits CLAVATA3 to regulate meristem determinacy and maintenance in Arabidopsis. P Natl Acad Sci 113:9375–9380

    Article  CAS  Google Scholar 

  • Li K, Yao Y, Xiao L, Zhao Z, Guo S, Fu Z, Du D (2018a) Fine mapping of the Brassica napus Bnsdt1 gene associated with determinate growth habit. Theor Appl Genet 131:193–208

    Article  CAS  PubMed  Google Scholar 

  • Li X, Zuo Q, Chang H, Bai G, Zhou G (2018b) Higher density planting benefits mechanical harvesting of rapeseed in the Yangtze River Basin of China. Field Crop Res 218:97–105

    Article  Google Scholar 

  • Li B, Gao J, Chen J, Wang Z, Tu J (2020) Identification and fine mapping of a major locus controlling branching in Brassica napus. Theor Appl Genet 133:771–783

    Article  CAS  PubMed  Google Scholar 

  • Liu X, Kim YJ, Muller R, Yumul RE, Liu C, Pan Y, Cao X, Goodrich J, Chen X (2011) AGAMOUS terminates floral stem cell maintenance in Arabidopsis by directly repressing WUSCHEL through recruitment of Polycomb Group proteins. Plant Cell 23:3654–3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohmann JU, Hong RL, Hobe M, Busch MA, Parcy F, Simon R, Weigel D (2001) A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105:793–803

    Article  CAS  PubMed  Google Scholar 

  • Mandel MA, Yanofsky MF (1995) The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7:1763–1771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ottoline Leyser HM, Furner IJ (1992) Characterisation of three shoot apical meristem mutants of Arabidopsis thaliana. Development 116:397–403

    Article  Google Scholar 

  • Payne T, Johnson SD, Koltunow AM (2004) KNUCKLES (KNU) encodes a C2H2 zinc-finger protein that regulates development of basal pattern elements of the Arabidopsis gynoecium. Development 131:3737–3749

    Article  CAS  PubMed  Google Scholar 

  • Pnueli L, Gutfinger T, Hareven D, Ben-Naim O, Ron N, Adir N, Lifschitz E (2001) Tomato SP-interacting proteins define a conserved signaling system that regulates shoot architecture and flowering. Plant Cell 13:2687–2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ranocha P, Dima O, Nagy R, Felten J, Corratgé-Faillie C, Novák O, Morreel K, Lacombe B, Martinez Y, Pfrunder S (2013) Arabidopsis WAT1 is a vacuolar auxin transport facilitator required for auxin homoeostasis. Nat Commun 4:1–9

    Article  Google Scholar 

  • Shannon S, Meeks-Wagner DR (1991) A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3:877–892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh UP, Singh RB (1983) The effect of soil texture, soil mixture, soil moisture and depth of soil on carpogenic germination of Sclerotinia sclerotiorum/Die Wirkung von Textur, Zusammensetzung und Feuchte des Bodens sowie der Tiefenlage auf Keimung und Fruchtkörperentwicklung von Sclerotinia sclerotiorum. Zeitschrift Für Pflanzenkrankheiten Pflanzenschutz/j Plant Dis Prot 90:662–669

    Google Scholar 

  • Sriboon S, Li H, Guo C, Senkhamwong T, Dai C, Liu K (2020) Knock-out of TERMINAL FLOWER 1 genes altered flowering time and plant architecture in Brassica napus. BMC Genet 21:1–13

    Article  Google Scholar 

  • Sun B, Ito T (2010) Floral stem cells: from dynamic balance towards termination. Biochem Soc T 38:613–616

    Article  CAS  Google Scholar 

  • Sun B, Ito T (2015) Regulation of floral stem cell termination in Arabidopsis. Front Plant Sci 6:17

    Article  PubMed  PubMed Central  Google Scholar 

  • Sun B, Xu Y, Ng K, Ito T (2009) A timing mechanism for stem cell maintenance and differentiation in the Arabidopsis floral meristem. Gene Dev 23:1791–1804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun B, Zhou Y, Cai J, Shang E, Yamaguchi N, Xiao J, Looi LS, Wee WY, Gao X, Wagner D, Ito T (2019) Integration of transcriptional repression and polycomb-mediated silencing of WUSCHEL in floral meristems. Plant Cell 31:1488–1505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Synek L, Schlager N, Eliáš M, Quentin M, Hauser MT, Žárský V (2006) AtEXO70A1, a member of a family of putative exocyst subunits specifically expanded in land plants, is important for polar growth and plant development. Plant J 48:54–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Graaff E, Dulk-Ras AD, Hooykaas PJ, Keller B (2000) Activation tagging of the LEAFY PETIOLE gene affects leaf petiole development in Arabidopsis thaliana. Development 127:4971–4980

    Article  PubMed  Google Scholar 

  • Van Der Graaff E, Hooykaas PJ, Keller B (2002) Activation tagging of the two closely linked genes LEP and VAS independently affects vascular cell number. Plant J 32:819–830

    Article  PubMed  Google Scholar 

  • Wang Y, Li J (2008) Molecular basis of plant architecture. Annu Rev Plant Biol 59:253–279

    Article  CAS  PubMed  Google Scholar 

  • Ward JM, Smith AM, Shah PK, Galanti SE, Yi H, Demianski AJ, van der Graaff E, Keller B, Neff MM (2006) A new role for the Arabidopsis AP2 transcription factor, LEAFY PETIOLE, in gibberellin-induced germination is revealed by the misexpression of a homologous gene, SOB2/DRN-LIKE. Plant Cell 18:29–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu C, Jin C, Xiao T, Zhang M, Yuan W (2007) Analysis on rape mechanization present situation and technical affection factors in whole productive course in China. J Agric Mech Res 12:207–210

    Google Scholar 

  • Xia S, Cheng L, Zu F, Dun X, Zhou Z, Yi B, Wen J, Ma C, Shen J, Tu J, Fu T (2012) Mapping of BnMs4 and BnRf to a common microsyntenic region of Arabidopsis thaliana chromosome 3 using intron polymorphism markers. Theor Appl Genet 124:1193–1200

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Prunet N, Gan ES, Wang Y, Stewart D, Wellmer F, Huang J, Yamaguchi N, Tatsumi Y, Kojima M, Kiba T, Sakakibara H, Jack TP, Meyerowitz EM, Ito T (2018) SUPERMAN regulates floral whorl boundaries through control of auxin biosynthesis. Embo J 37:e97499

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamaguchi N, Huang J, Xu Y, Tanoi K, Ito T (2017) Fine-tuning of auxin homeostasis governs the transition from floral stem cell maintenance to gynoecium formation. Nat Commun 8:1–15

    Article  CAS  Google Scholar 

  • Young CS, Clarkson JP, Smith JA, Watling M, Whipps JM (2004) Environmental conditions influencing Sclerotinia sclerotiorum infection and disease development in lettuce. Plant Pathol 53:387–397

    Article  Google Scholar 

  • Zhang S, Hu W, Wang L, Lin C, Cong B, Sun C, Luo D (2005) TFL1/CEN-like genes control intercalary meristem activity and phase transition in rice. Plant Sci 168:1393–1408

    Article  CAS  Google Scholar 

  • Zhang Y, Zhang D, Yu H, Lin B, Hua S, Ding H, Fu Y (2018) Location and mapping of the determinate growth habit of Brassica napus by bulked segregant analysis (BSA) using whole genome re-sequencing. Sci Agric Sin 51:3029–3039

    Google Scholar 

  • Zhao X, Bao L, Zhang K, Hu K, Yi B, Wen J, Ma C, Shen J, Fu T, Tu J (2016) Breeding signature of combining ability improvement revealed by a genomic variation map from recurrent selection population in. Sci Rep 6:29553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng M, Zhang L, Tang M, Liu J, Liu H, Yang H, Fan S, Terzaghi W, Wang H, Hua W (2020) Knockout of two Bna MAX 1 homologs by CRISPR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). Plant Biotechnol J 18:644–654

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was financed by the National Key Research and Development Program of China (Grant Number 2016YFD0100305).

Funding

This work was funded by the National Key Research and Development Program of China [Grant No. 2016YFD0100305].

Author information

Authors and Affiliations

Authors

Contributions

JC performed the experiments and prepared the manuscript. SZ and BL helped with the experiments. CZ and KH helped analyze the data. JW, BY, CM, JS, and TF provided suggestions related to the experimental design and provided the experimental platform. JT oversaw the project and revised the manuscript.

Corresponding author

Correspondence to Jinxing Tu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest.

Ethical approval

Not applicable.

Consent for publication

Not applicable.

Additional information

Communicated by Maria Laura Federico.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Zhang, S., Li, B. et al. Fine mapping of BnDM1—the gene regulating indeterminate inflorescence in Brassica napus. Theor Appl Genet 136, 151 (2023). https://doi.org/10.1007/s00122-023-04384-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04384-0

Navigation