Skip to main content
Log in

Major and stably expressed QTL for traits related to the mature wheat embryo independent of kernel size

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key Message

Two major and stably expressed QTL for traits related to mature wheat embryo independent of kernel size were identified and validated in a natural population that contained 171 Sichuan wheat accessions and 49 Sichuan wheat landraces.

Abstract

As the juvenile of a highly differentiated plant, mature wheat (Triticum aestivum L.) embryos are highly significant to agricultural production. To understand the genetic basis of traits related to wheat embryo size, the embryo of mature kernels in a recombination inbred line that contained 126 lines from four environments was measured. The genetic loci of embryo size, including embryo length (EL), embryo width (EW), embryo area (EA), embryo length/kernel length (EL/KL), embryo width/kernel width (EW/KW), and EL/EW, were identified based on a genetic linkage map constructed based on PCR markers and the Wheat 55 K single nucleotide polymorphism (SNP) array. A total of 50 quantitative trait loci (QTL) for traits related to wheat embryo size were detected. Among them, QEL.sicau-2SY-4A for EL and QEW.sicau-2SY-7B for EW were major and stably expressed and were genetically independent of KL and KW, respectively. Their effects were further verified in a natural population that contained 171 Sichuan wheat accessions and 49 Sichuan wheat landraces. Further analysis showed that TraesCS4A02G343300 and TraesCS7B02G006800 could be candidate genes for QEL.sicau-2SY-4A and QEW.sicau-2SY-7B, respectively. In addition, significant positive correlations between EL and kernel-related traits and the 1,000-grain weight were detected. Collectively, this study broadens our understanding of the genetic basis of wheat embryo size and will be helpful for the further fine-mapping of interesting loci in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files; further inquiries can be directed to the corresponding author.

References

  • Anastasiou E, Kenz S, Gerstung M, MacLean D, Timmer J, Fleck C, Lenhard M (2007) Control of plant organ size by KLUH/CYP78A5-dependent intercellular signaling. Dev Cell 13:843–856

    Article  CAS  PubMed  Google Scholar 

  • Barnes P (1982) Composition of cereal germ preparations. Z Leb Unters F A 174:467–471

    Article  CAS  Google Scholar 

  • Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, Forrest K, Saintenac C, Brown-Guedira GL, Akhunova A, See D, Bai G, Pumphrey M, Tomar L, Wong D, Kong S, Reynolds M, da Silva ML, Bockelman H, Talbert L, Anderson JA, Dreisigacker S, Baenziger S, Carter A, Korzun V, Morrell PL, Dubcovsky J, Morell MK, Sorrells ME, Hayden MJ, Akhunov E (2013) Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci 110:8057–8062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Wei J, Tian R, Zeng Z, Tang H, Liu Y, Xu Q, Deng M, Jiang Q, Chen G, Liu Y, Li W, Qi P, Jiang Y, Jiang Y, Tang L, Wei Y, Zheng Y, Lan X, Ma J (2022a) A major quantitative trait locus for wheat total root length associated with precipitation distribution. Front Plant Sci 13:995183

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen H, Zhao C, Yang Y, Zeng Z, Li W, Liu Y, Tang H, Xu Q, Deng M, Jiang Q, Chen G, Peng Y, Jiang Y, Jiang Y, Wei Y, Zheng Y, Lan X, Ma J (2022b) Identification and validation of a locus for wheat maximum root length independent of parental reproductive environment. Front Plant Sci 13:999414

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen J, Zhou J, Qu X, Wang S, Tang H, Jiang Y, Tang L, Lan X, Wei Y, Zhou J, Ma J (2023) Mapping and analysis of QTL for embryo size-related traits in tetraploid wheat. Sci Agric Sin 56(2):203–216

    Google Scholar 

  • Chris M, Rebetzke G (2015) Genomic regions for embryo size and early vigour in multiple wheat (Triticum aestivum L.) populations. Agron-Basel 5:152–179

    Google Scholar 

  • Cui F, Li J, Ding A, Zhao C, Wang L, Wang X, Li S, Bao Y, Li X, Feng D, Kong L, Wang H (2011) Conditional QTL mapping for plant height with respect to the length of the spike and internode in two mapping populations of wheat. Theor Appl Genet 122:1517–1536

    Article  PubMed  Google Scholar 

  • Dong Y, Tsuzuki E, Kamiunten H, Terao H, Lin D (2003) Mapping of QTL for embryo size in rice. Crop Sci 43:1068–1071

    Article  CAS  Google Scholar 

  • Friendly M (2002) Corrgrams: exploratory displays for correlation matrices. Am Stat 56:316–324

    Article  Google Scholar 

  • Galau GA, Hughes DW, Lr D (1986) Abscisic acid induction of cloned cotton late embryogenesis-abundant (Lea) mRNAs. Plant Mol Biol 7:155–170

    Article  CAS  PubMed  Google Scholar 

  • Guo J, Wang F, Song J, Sun W, Zhang X (2010) The expression of Orysa;CycB1;1 is essential for endosperm formation and causes embryo enlargement in rice. Planta 231:293–303

    Article  CAS  PubMed  Google Scholar 

  • Guo X, Fu Y, Lee YJ, Chern M, Li M, Cheng M, Dong H, Yuan Z, Gui L, Yin J, Qing H, Zhang C, Pu Z, Liu Y, Li W, Li W, Qi P, Chen G, Jiang Q, Ma J, Chen X, Wei Y, Zheng Y, Wu Y, Liu B, Wang J (2022) The PGS1 basic helix-loop-helix protein regulates Fl3 to impact seed growth and grain yield in cereals. Plant Biotechnol J 20:1311–1326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hao J, Wang D, Wu Y, Huang K, Duan P, Li N, Xu R, Zeng D, Dong G, Zhang B, Zhang L, Inzé D, Qian Q, Li Y (2021) The GW2-WG1-OsbZIP47 pathway controls grain size and weight in rice. Mol Plant 14:1266–1280

    Article  CAS  PubMed  Google Scholar 

  • Jia M, Li Y, Wang Z, Tao S, Sun G, Kong X, Wang K, Ye X, Liu S, Geng S, Mao L, Li A (2021) TaIAA21 represses TaARF25-mediated expression of TaERFs required for grain size and weight development in wheat. Plant J 108:1754–1767

    Article  CAS  PubMed  Google Scholar 

  • Johnson V, Mattern. PJ (1987) Wheat, rye, and triticale. Nutritional quality of cereal grains: genetic and agronomic improvement 28:133-182

  • Li C, Tang H, Luo W, Zhang X, Mu Y, Deng M, Liu Y, Jiang Q, Chen G, Wang J, Qi P, Pu Z, Jiang Y, Wei Y, Zheng Y, Lan X, Ma J (2020) A novel, validated, and plant height-independent QTL for spike extension length is associated with yield-related traits in wheat. Theor Appl Genet 133:3381–3393

  • Li H, Ye G, Wang J (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Li QF, Zhou Y, Xiong M, Ren XY, Han L, Wang JD, Zhang CQ, Fan XL, Liu QQ (2020) Gibberellin recovers seed germination in rice with impaired brassinosteroid signalling. Plant Sci 293:110435

    Article  CAS  PubMed  Google Scholar 

  • Li X, Wang M, Zhang R, Fang H, Fu X, Yang X, Li J (2022) Genetic architecture of embryo size and related traits in maize. Crop J 10:204–215

    Article  Google Scholar 

  • Liu K, Sun X, Ning T, Duan X, Wang Q, Liu T, An Y, Guan X, Tian J, Chen J (2018) Genetic dissection of wheat panicle traits using linkage analysis and a genome-wide association study. Theor Appl Genet 131:1073–1090

    Article  CAS  PubMed  Google Scholar 

  • Liu H, Li H, Hao C, Wang K, Wang Y, Qin L, An D, Li T, Zhang X (2020a) TaDA1, a conserved negative regulator of kernel size, has an additive effect with TaGW2 in common wheat (Triticum aestivum L.). Plant Biotechnol J 18:1330–1342

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Tang H, Qu X, Liu H, Li C, Tu Y, Li S, Habib A, Mu Y, Dai S, Deng M, Jiang Q, Liu Y, Chen G, Wang J, Chen G, Li W, Jiang Y, Wei Y, Lan X, Zheng Y, Ma J (2020b) A novel, major, and validated QTL for the effective tiller number located on chromosome arm 1BL in bread wheat. Plant Mol Biol 104:173–185

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Zhou J, Tang H, Tu Y, Mu Y, Gou L, Jiang Q, Liu Y, Chen G, Wang J, Qi P, Li W, Jiang Y, Yan Z, Kang H, Wei Y, Lan X, Zheng Y, Ma J (2022) A major vernalization-independent QTL for tiller angle on chromosome arm 2BL in bread wheat. Crop J 10:185–193

    Article  Google Scholar 

  • Lv Q, Li L, Meng Y, Sun H, Chen L, Wang B, Li X (2022) Wheat E3 ubiquitin ligase TaGW2-6A degrades TaAGPS to affect seed size. Plant Sci 320:111274

    Article  CAS  PubMed  Google Scholar 

  • Lyons G, Genc Y, Stangoulis J, Palmer L, Graham R (2005) Selenium distribution in wheat grain, and the effect of postharvest processing on wheat selenium content. Biol Trace Elem Res 103:155–168

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Qin N, Cai B, Chen G, Ding P, Zhang H, Yang C, Huang L, Mu Y, Tang H, Liu Y, Wang J, Qi P, Jiang Q, Zheng Y, Liu C, Lan X, Wei Y (2019a) Identification and validation of a novel major QTL for all-stage stripe rust resistance on 1BL in the winter wheat line 20828. Theor Appl Genet 132:1363–1373

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Ding P, Liu J, Li T, Zou Y, Habib A, Mu Y, Tang H, Jiang Q, Liu Y, Chen G, Wang J, Deng M, Qi P, Li W, Pu Z, Zheng Y, Wei Y, Lan X (2019b) Identification and validation of a major and stably expressed QTL for spikelet number per spike in bread wheat. Theor Appl Genet 132:3155–3167

    Article  CAS  PubMed  Google Scholar 

  • Ma J, Tu Y, Zhu J, Luo W, Liu H, Li C, Li S, Liu J, Ding P, Habib A, Mu Y, Tang H, Liu Y, Jiang Q, Chen G, Wang J, Li W, Pu Z, Zheng Y, Wei Y, Kang H, Chen G, Lan X (2020) Flag leaf size and posture of bread wheat: genetic dissection, QTL validation and their relationships with yield-related traits. Theor Appl Genet 133:297–315

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Wang M, Wu J, Guo W, Chen Y, Li G, Wang Y, Shi W, Xia G, Fu D, Kang Z, Ni F (2021) WheatOmics: A platform combining multiple omics data to accelerate functional genomics studies in wheat. Mol Plant 14:1965–1968

    Article  CAS  PubMed  Google Scholar 

  • Murdoch DJ, Chow ED (1996) A graphical display of large correlation matrices. Am Stat 50:178–180

    Google Scholar 

  • Neuberger T, Sreenivasulu N, Rokitta M, Rolletschek H, Göbel C, Rutten T, Radchuk V, Feussner I, Wobus U, Jakob P, Webb A, Borisjuk L (2008) Quantitative imaging of oil storage in developing crop seeds. Plant Biotechnol J 6:31–45

    CAS  PubMed  Google Scholar 

  • Qu X, Liu J, Xie X, Xu Q, Tang H, Mu Y, Pu Z, Li Y, Ma J, Gao Y, Jiang Q, Liu Y, Chen G, Wang J, Qi P, Habib A, Wei Y, Zheng Y, Lan X, Ma J (2021) Genetic mapping and validation of loci for kernel-related traits in wheat (Triticum aestivum L.). Front Plant Sci 12:667493

    Article  PubMed  PubMed Central  Google Scholar 

  • Rensing SA, Weijers D (2021) Flowering plant embryos: How did we end up here? Plant Reprod 34:365–371

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabelli PA, Larkins BA (2009) The development of endosperm in grasses. Plant Physiol 149:14–26

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shewry P (2007) Improving the protein content and composition of cereal grain. J Cereal Sci 46:239–250

    Article  CAS  Google Scholar 

  • Sun C, Dong Z, Zhao L, Ren Y, Zhang N, Chen F (2020) The Wheat 660K SNP array demonstrates great potential for marker-assisted selection in polyploid wheat. Plant Biotechnol J 18:1354–1360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ungru A, Nowack MK, Reymond M, Shirzadi R, Kumar M, Biewers S, Grini PE, Schnittger A (2008) Natural variation in the degree of autonomous endosperm formation reveals independence and constraints of embryo growth during seed development in Arabidopsis thaliana. Genetics 179:829–841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90,000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Winfield MO, Allen AM, Burridge AJ, Barker GL, Benbow HR, Wilkinson PA, Coghill J, Waterfall C, Davassi A, Scopes G, Pirani A, Webster T, Brew F, Bloor C, King J, West C, Griffiths S, King I, Bentley AR, Edwards KJ (2016) High-density SNP genotyping array for hexaploid wheat and its secondary and tertiary gene pool. Plant Biotechnol J 14:1195–1206

    Article  CAS  PubMed  Google Scholar 

  • Xu C, Liu Y, Li Y, Xu X, Xu C, Li X, Xiao J, Zhang Q (2015) Differential expression of GS5 regulates grain size in rice. J Exp Bot 66:2611–2623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ye X, Li J, Cheng Y, Yao F, Long L, Yu C, Wang Y, Wu Y, Li J, Wang J, Jiang Q, Li W, Ma J, Wei Y, Zheng Y, Chen G (2019) Genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in Sichuan wheat. BMC Plant Biol 19:147

    Article  PubMed  PubMed Central  Google Scholar 

  • You J, Liu H, Wang S, Luo W, Gou L, Tang H, Mu Y, Deng M, Jiang Q, Chen G, Qi P, Peng Y, Tang L, Habib A, Wei Y, Zheng Y, Lan X, Ma J (2021) Spike density quantitative trait loci detection and analysis in tetraploid and hexaploid wheat recombinant inbred line populations. Front Plant Sci 12:796397

    Article  PubMed  PubMed Central  Google Scholar 

  • Yuan N, Wang J, Zhou Y, An D, Xiao Q, Wang W, Wu Y (2019) EMB-7L is required for embryogenesis and plant development in maize involved in RNA splicing of multiple chloroplast genes. Plant Sci 287:110203

    Article  CAS  PubMed  Google Scholar 

  • Zheng X, Wen X, Qiao L, Zhao J, Zhang X, Li X, Zhang S, Yang Z, Chang Z, Chen J, Zheng J (2019) A novel QTL QTrl.saw-2D.2 associated with the total root length identified by linkage and association analyses in wheat (Triticum aestivum L.). Planta 250:129–143

    Article  CAS  PubMed  Google Scholar 

  • Zhou Y, Tang H, Cheng MP, Dankwa KO, Chen ZX, Li ZY, Gao S, Liu YX, Jiang QT, Lan XJ, Pu ZE, Wei YM, Zheng YL, Hickey LT, Wang JR (2017) Genome-wide association study for pre-harvest sprouting resistance in a large germplasm collection of Chinese wheat landraces. Front Plant Sci 8:401

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu J (1995) Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141:1633–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu T, Wang L, Rimbert H, Rodriguez JC, Deal KR, De Oliveira R, Choulet F, Keeble-Gagnère G, Tibbits J, Rogers J, Eversole K, Appels R, Gu YQ, Mascher M, Dvorak J, Luo MC (2021) Optical maps refine the bread wheat Triticum aestivum cv. Chin Spring Genome Assem Plant J 107:303–314

    CAS  Google Scholar 

Download references

Acknowledgements

We thank the anonymous referees for critical reading and revising this manuscript. We thank language editors from MogoEdit company to help read and revise this paper.

Funding

This work is supported by the Key Research and Development Program of Sichuan Province (2021YFYZ0002 and 2023YFSY0056), Sichuan Science and Technology Program (2022YFH0053 and 2021YFH0083), and the Natural Science Foundation of Sichuan Province (2023NSFSC0223), Sichuan Province Science Foundation for Distinguished Young Scholars (2022JDJQ0006). 

Author information

Authors and Affiliations

Authors

Contributions

SRW and TYW finished the study and drafted this manuscript. QJX and XRQ participated in phenotype measurement and analyzed data. QX and QTJ helped phenotype measurement and data analysis. ZEP and YL did field work and data analysis. YFJ and GYC collected and analyzed data. MD, YLL, HPT, GDC, YJH and LLG helped with data analysis. YMW revised the manuscript. YLZ discussed results and revised the manuscript. JM designed the experiments, guided the entire study, participated in data analysis and extensively revised this manuscript. All authors participated in the research and approved the final manuscript.

Corresponding author

Correspondence to Jian Ma.

Ethics declarations

Conflict of interest

All authors declare that there is no conflict of interest.

Ethical approval

All experiments and data analyses were conducted in Sichuan. All authors contributed to the study and approved the final version for submission. The manuscript has not been submitted to any other journal.

Additional information

Communicated by Takao Komatsuda.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, T., Xuan, Q. et al. Major and stably expressed QTL for traits related to the mature wheat embryo independent of kernel size. Theor Appl Genet 136, 90 (2023). https://doi.org/10.1007/s00122-023-04346-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04346-6

Navigation