Skip to main content
Log in

Identification of QTL for reducing loss of grain yield under salt stress conditions in bi-parental populations derived from wheat landrace Hongmangmai

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A novel QTL (QSt.nftec-2BL) was mapped to a 0.7 cM interval on chromosome 2B. Plants carrying QSt.nftec-2BL produced higher grain yields by up to 21.4% than otherwise in salinized fields.

Abstract

Wheat yield has been limited by soil salinity in many wheat-growing areas globally. The wheat landrace Hongmangmai (HMM) possesses salt tolerance as it produced higher grain yields than other tested wheat varieties including Early Premium (EP) under salt stresses. To detect QTL underlying this tolerance, wheat cross EP × HMM was chosen to serve as mapping population that was homozygous at Ppd (photoperiod response gene), Rht (reduced plant height gene) and Vrn (vernalization gene); thus, interference with QTL detection by these loci could be minimized. QTL mapping was conducted firstly using 102 recombinant inbred lines (RILs) that were selected from the EP × HMM population (827 RILs) for similarity in grain yield under non-saline condition. Under salt stresses, however, the 102 RILs varied significantly in grain yield. These RILs were genotyped using a 90 K SNP (single nucleotide polymorphism) array; consequently, a QTL (QSt.nftec-2BL) was detected on chromosome 2B. Then, using 827 RILs and new simple sequence repeat (SSR) markers developed according to the reference sequence IWGSC RefSeq v1.0, location of QSt.nftec-2BL was refined to a 0.7 cM (6.9 Mb) interval flanked by SSR markers 2B-557.23 and 2B-564.09. Selection for QSt.nftec-2BL was performed based on the flanking markers using two bi-parental wheat populations. Trials for validating effectiveness of the selection were conducted in salinized fields in two geographical areas and two crop seasons, demonstrating that wheat plants with the salt-tolerant allele in homozygous status at QSt.nftec-2BL produced higher grain yields by up to 21.4% than otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

All data and materials described in this paper are available from the corresponding author upon request.

Code availability

Not applicable.

Abbreviations

2BL:

The long arm of chromosome 2B

EP:

Early Premium, a common wheat variety

HMM:

Hongmangmai, a common wheat landrace

IWGSC:

International Wheat Genome Sequencing Consortium

LOD:

Logarithm of the odds

PVE:

Phenotypic variance explained

QTL:

Quantitative trait locus/loci

RIL:

Recombinant inbred line

SNP:

Single nucleotide polymorphism

SSR:

Simple sequence repeat

References

  • Asif MA, Schilling RK, Tilbrook J, Brien C, Dowling K, Rabie H, Short L, Trittermann C, Garcia A, Barrett-Lennard EG, Berger B, Mather DE, Gilliham M, Fleury D, Tester M, Roy SJ, Pearson AS (2018) Mapping of novel salt tolerance QTL in an Excalibur × Kukri doubled haploid wheat population. Theor Appl Genet 131:2179–2196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Asif MA, Garcia M, Tilbrook J, Brien C, Dowling K, Berger B, Schilling RK, Short L, Trittermann C, Gilliham M, Fleury D, Roy SJ, Pearson AS (2021) Identification of salt tolerance QTL in a wheat RIL mapping population using destructive and non-destructive phenotyping. Funct Plant Biol 48:131–140

    Article  CAS  PubMed  Google Scholar 

  • Azadi A, Mardi M, Hervan EM, Mohammadi SA, Moradi F, Tabatabaee MT, Pirseyedi SM, Ebrahimi M, Fayaz F, Kazemi M, Ashkani S, Nakhoda B, Mohammadi-Nejad G (2015) QTL mapping of yield and yield components under normal and salt-stress conditions in bread wheat (Triticum aestivum L.). Plant Mol Biol Rep 33:102–120

    Article  CAS  Google Scholar 

  • Bassam BJ, Caetano-Anolles G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  CAS  PubMed  Google Scholar 

  • Beales J, Turner A, Griffiths S, Snape JW, Laurie DA (2007) A pseudo-response regulator is mis-expressed in photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum). Theor Appl Genet 115:721–733

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Dai Y, Li Y, Yang J, Jiang Y, Liu G, Yu C, Zhong F, Lian B, Zhang J (2022) Overexpression of the Salix matsudana SmAP2-17 gene improves Arabidopsis salinity tolerance by enhancing the expression of SOS3 and ABI5. BMC Plant Biol 22:102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devi R, Ram S, Rana V, Malik VK, Pande V, Singh GP (2019) QTL mapping for salt tolerance associated traits in wheat (Triticum aestivum L.). Euphytica 215:210

    Article  CAS  Google Scholar 

  • Díaz De León JL, Escoppinichi R, Geraldo N, Castellanos T, Mujeeb-Kazi A, Röder MS (2011) Quantitative trait loci associated with salinity tolerance in field grown bread wheat. Euphytica 181:371–383

    Article  Google Scholar 

  • Dubcovsky J, María GS, Epstein E, Luo MC, Dvorák J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92:448–454

    Article  CAS  PubMed  Google Scholar 

  • Ellis MH, Spielmeyer W, Gale KR, Rebetzke GJ, Richards RA (2002) “Perfect” markers for the Rht-B1b and Rht-D1b dwarfing genes in wheat. Theor Appl Genet 105:1038–1042

    Article  CAS  PubMed  Google Scholar 

  • Epstein E, Norlyn JD, Rush DW, Kingsbury RW, Kelley DB, Cunningham GA, Wrona AF (1980) Saline culture of crops: a genetic approach. Science 210:399–404

    Article  CAS  PubMed  Google Scholar 

  • Fu D, Szücs P, Yan L, Helguera M, Skinner JS, Zitzewitz JV, Hayes PM, Dubcovsky J (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65

    Article  CAS  PubMed  Google Scholar 

  • Genc Y, McDonald GK, Tester M (2007) Reassessment of tissue Na+ concentration as a criterion for salinity tolerance in bread wheat. Plant Cell Environ 30:1486–1498

    Article  CAS  PubMed  Google Scholar 

  • Genc Y, Oldach K, Gogel B, Wallwork H, McDonald GK, Smith AB (2013) Quantitative trait loci for agronomic and physiological traits for a bread wheat population grown in environments with a range of salinity levels. Mol Breed 32:39–59

    Article  Google Scholar 

  • Genc Y, Taylor J, Lyons G, Li Y, Cheong J, Appelbee M, Oldach K, Sutton T (2019) Bread wheat with high salinity and sodicity tolerance. Front Plant Sci 10:1280

    Article  PubMed  PubMed Central  Google Scholar 

  • Guerriero G, Behr M, Hausman J, Legay S (2017) Textile hemp vs. salinity: insights from a targeted gene expression analysis. Genes 8:242

    Article  PubMed  PubMed Central  Google Scholar 

  • Gupta PK, Balyan HS, Sharma S, Kumar R (2020) Genetics of yield, abiotic stress tolerance and biofortification in wheat (Triticum aestivum L.). Theor Appl Genet 133:1569–1602

    Article  PubMed  Google Scholar 

  • Holland JB, Nyquist WE, Cervantes-Martinez C (2003) Estimating and interpreting heritability for plant breeding: an update. Plant Breed Rev 22:9–112

    Google Scholar 

  • Ilyas N, Amjid MW, Saleem MA, Khan W, Wattoo FM, Rana RM, Maqsood RH, Zahid A, Shah GA, Anwar A, Ahmad MQ, Shaheen M, Riaz H, Ansari MJ (2020) Quantitative trait loci (QTL) mapping for physiological and biochemical attributes in a Pasban90/ Frontana recombinant inbred lines (RILs) population of wheat (Triticum aestivum) under salt stress condition. Saudi J Biol Sci 27:341–351

    Article  CAS  PubMed  Google Scholar 

  • International Wheat Genome Sequencing Consortium (IWGSC) (2014) A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science 345:1251788

    Article  Google Scholar 

  • IWGSC (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Article  Google Scholar 

  • Jahani M, Mohammadi-Nejad G, Nakhoda B, Rieseberg LH (2019) Genetic dissection of epistatic and QTL by environment interaction effects in three bread wheat genetic backgrounds for yield related traits under saline conditions. Euphytica 215:103

    Article  Google Scholar 

  • Li HH, Ye GY, Wang JK (2007) A modified algorithm for the improvement of composite interval mapping. Genetics 175:361–374

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Li D, Yan J, Wang K, Luo H, Zhang W (2019) MiR319 mediated salt tolerance by ethylene. Plant Biotechnol J 17:2370–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo Q, Zheng Q, Hu P, Liu L, Yang G, Li H, Li B, Li Z (2021) Mapping QTL for agronomic traits under two levels of salt stress in a new constructed RIL wheat population. Theor Appl Genet 134:171–189

    Article  CAS  PubMed  Google Scholar 

  • Marone D, Russo MA, Mores A, Ficco DBM, Laidò G, Mastrangelo AM, Borrelli GM (2021) Importance of landraces in cereal breeding for stress tolerance. Plants 10:1267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: A rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohler V, Lukman R, Ortiz-Islas S, William M, Worland AJ, van Beem J, Wenzel G (2004) Genetic and physical mapping of photoperiod insensitive gene Ppd-B1 in common wheat. Euphytica 138:33–40

    Article  CAS  Google Scholar 

  • Mujeeb-Kazi A, Munns R, Rasheed A, Ogbonnaya FC, Ali N, Hollington P, Dundas I, Saeed N, Wang R, Rengasamy P, Saddiq MS, De León JLD, Ashraf M, Rajaram S (2019) Breeding strategies for structuring salinity tolerance in wheat. Adv Agron 155:121–187

    Article  Google Scholar 

  • Mukhopadhyay P, Tyagi AK, Tyagi AK (2015) OsTCP19 influences developmental and abiotic stress signaling by modulating ABI4-mediated pathways. Sci Rep 5:9998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–366

    Article  CAS  PubMed  Google Scholar 

  • Narjesi V, Mardi M, Hervan EM, Azadi A, Naghavi MR, Ebrahimi M, Zali AA (2015) Analysis of quantitative trait loci (QTL) for grain yield and agronomic traits in wheat (Triticum aestivum L.) under normal and salt-stress conditions. Plant Mol Biol Rep 33:2030–2040

    Article  CAS  Google Scholar 

  • Newton AC, Akar T, Baresel JP, Bebeli PJ, Bettencourt E, Bladenopoulos KV, Czembor JH, Fasoula DA, Katsiotis A, Koutis K, Koutsika-Sotiriou M, Kovacs G, Larsson H, Pinheiro de Carvalho MAA, Rubiales D, Russel J, Dos Santos TMM, Vaz Patto MC (2010) Cereal landraces for sustainable agriculture. A review. Agron Sustain Dev 30:237–269

    Article  Google Scholar 

  • Nezhad NM, Kamali MRJ, McIntyre CL, Fakheri BA, Omidi M, Masoudi B (2019) Mapping QTLs with main and epistatic effect on Seri “M82 × Babax” wheat population under salt stress. Euphytica 215:130

    Article  Google Scholar 

  • Oyiga BC, Sharma RC, Baum M, Ogbonnaya FC, Léon J, Ballvora A (2018) Allelic variations and differential expressions detected at quantitative trait loci for salt stress tolerance in wheat. Plant Cell Environ 41:919–935

    Article  CAS  PubMed  Google Scholar 

  • Oyiga BC, Ogbonnaya FC, Sharma RC, Baum M, Léon J, Ballvora A (2019) Genetic and transcriptional variations in NRAMP-2 and OPAQUE1 genes are associated with salt stress response in wheat. Theor Appl Genet 132:323–346

    Article  CAS  PubMed  Google Scholar 

  • Quamruzzaman Md, Manik SMN, Shabala S, Cao F, Zhou M (2022) Genome-wide association study reveals a genomic region on 5AL for salinity tolerance in wheat. Theor Appl Genet 135:709–721

    Article  CAS  PubMed  Google Scholar 

  • Quarrie SA, Steed A, Calestani C, Semikhodskii A, Lebreton C, Chinoy C, Steele N, Pljevljakusic D, Waterman E, Weyen J, Schondelmaier J, Habash DZ, Farmer P, Saker L, Clarkson DT, Abugalieva A, Yessimbekova M, Turuspekov Y, Abugalieva S, Tuberosa R, Sanguineti M-C, Hollington PA, Aragues R, Royo A, Dodig D (2005) A high-density genetic map of hexaploid wheat (Triticum aestivum L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theor Appl Genet 110:865–880

    Article  CAS  PubMed  Google Scholar 

  • Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023

    Article  CAS  PubMed  Google Scholar 

  • Röder MS, Korzun V, Wandehake K, Planschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    Article  PubMed  PubMed Central  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proc Natl Acad Sci USA 81:8014–8018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma DL, Bhoite R, Reeves K, Forrest K, Smith R, Dowla MANNU (2022) Genome-wide superior alleles, haplotypes and candidate genes associated with tolerance on sodic-dispersive soils in wheat (Triticum aestivum L.). Theor Appl Genet. https://doi.org/10.1007/s00122-021-04021-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Stam P (1993) Construction of integrated genetic linkage maps by means of a new computer package: JOINMAP. Plant J 3:739–744

    Article  CAS  Google Scholar 

  • Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, International Wheat Genome Sequencing Consortium, Lillemo M, Mather D, Appels R, Dolferus R, Brown-Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo MC, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E (2014) Characterization of polyploid wheat genomic diversity using a high-density 90000 single nucleotide polymorphism array. Plant Biotechnol J 12:787–796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang S, Basten JC, Zeng ZB (2010) Windows QTL cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh, NC. http://statgen.ncsu.edu/qtlcart/WQTLCart.htm. Accessed 24 July 2020

  • Xiong W, Zhao Y, Gao H, Li Y, Tang W, Ma L, Yang G, Sun J (2022) Genomic characterization and expression analysis of TCP transcription factors in Setaria italica and Setaria viridis. Plant Signal Behav 17:e2075158

    Article  Google Scholar 

  • Yan L, Helguera M, Kato K, Fukuyama S, Sherman J, Dubcovsky J (2004) Allelic variation at the VRN-1 promoter region in polyploid wheat. Theor Appl Genet 109:1677–1686

    Article  CAS  PubMed  Google Scholar 

  • Yan L, Fu D, Li C, Blechl A, Tranquilli G, Bonafede M, Sanchez A, Valarik M, Yasuda S, Dubcovsky J (2006) The wheat and barley vernalization gene VRN3 is an orthologue of FT. Proc Natl Acad Sci USA 103:19581–19586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Lele Luo, Dawei Wang, Xinde Lin, Qiang Ding and Jian He for providing excellent technical assistance in wheat grain yield trials. This study was supported by National Key Research and Development Program of China (2020YFD0900102), Beijing Academy of Agriculture and Forestry Sciences Sci-Tech Innovation Capacity Building Program (KJCX20200115) and National Natural Science Foundation of China (31871923; 32101702).

Author information

Authors and Affiliations

Authors

Contributions

XZ and WQ conceived the study and designed and managed the experiments. JF, WQ and XZ developed the wheat populations. XZ, XJ, WQ, JF, YZ and JR performed the phenotyping and/or SSR genotyping. XZ and XJ developed the SSR markers, constructed the genetic maps and statistically analyzed the experimental data. XZ drafted the manuscript. All authors reviewed the manuscript and provided suggestions.

Corresponding authors

Correspondence to Jing Feng or Wei Quan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The authors declare that the experiments comply with the current laws of China.

Additional information

Communicated by Peter Langridge.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file 1 (XLSX 223 KB)

Supplementary file 2 (DOCX 57 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Jiang, X., Zhang, Y. et al. Identification of QTL for reducing loss of grain yield under salt stress conditions in bi-parental populations derived from wheat landrace Hongmangmai. Theor Appl Genet 136, 49 (2023). https://doi.org/10.1007/s00122-023-04290-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00122-023-04290-5

Navigation