Skip to main content
Log in

Characterization of Pm65, a new powdery mildew resistance gene on chromosome 2AL of a facultative wheat cultivar

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A new powdery mildew resistance gene that can be readily used in wheat breeding, Pm65, was identified in the facultative wheat cultivar Xinmai 208 and mapped to the terminal region of chromosome 2AL.

Abstract

Wheat powdery mildew, a widely occurring disease caused by the biotrophic fungus Blumeriagraminis f. sp. tritici (Bgt), poses a serious threat to wheat production. A high breeding priority is to identify powdery mildew resistance genes that can be readily used either alone or in gene complexes involving other disease resistance genes. An F2 population and 227 F2:3 families derived from the cross Xinmai 208 × Stardust were generated to map a powdery mildew resistance gene in Xinmai 208, a high-yielding Chinese wheat cultivar. Genetic analysis indicated that Xinmai 208 carries a single dominant powdery mildew resistance gene, designated herein Pm65, and linkage analysis delimited Pm65 to a 0.5 cM interval covering 531.8 Kb (763,289,667–763,821,463 bp) on chromosome 2AL in the Chinese Spring reference sequence. An allelism test indicated that Pm65 is a new gene about 10.3 cM distal to the Pm4 locus. Pm65 was 0.3 cM proximal to Xstars355 and 0.2 cM distal to Xstars356. It conferred near-immunity to 19 of 20 Bgt isolates collected from different wheat-growing regions of the USA. Coming from a high-yield potential cultivar, Pm65 can be directly used to enhance powdery mildew resistance in wheat. The newly developed SSR markers Xstars355 and Xstars356 have the potential to tag Pm65 for wheat improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

Bgt :

Blumeria graminis f. sp. tritici

cM:

Centimorgan

STS:

Sequence tag site

SSR:

Simple sequence repeat

References

  • Appels R, Eversole K, Feuillet C (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191

    Article  CAS  Google Scholar 

  • Bariana HS, McIntosh RA (1994) Characterization and origin of rust and powdery mildew resistance genes in VPM1 wheat. Euphytica 76:53–61

    Article  Google Scholar 

  • Braun HJ, Ekiz H, Eser V et al (1997) Breeding priorities of winter wheat programs. In: Braun HJ, Altay F, Kronstad WE, Beniwal SPS, McNab A (eds) Wheat: prospects for global improvement. Springer, Dordrecht, pp 553–560

    Chapter  Google Scholar 

  • Cowger C, Mehra LK, Arellano C et al (2018) Virulence differences in Blumeria graminis f. sp. tritici from the central and eastern United States. Phytopathology 108:402–411

    Article  CAS  PubMed  Google Scholar 

  • Dubcovsky J, Galvez AF, Dvořák J (1994) Comparison of the genetic organization of the early salt-stress-response gene system in salt tolerant Lophopyrum elongatum and salt-sensitive wheat. Theor Appl Genet 87:957–964

    Article  CAS  PubMed  Google Scholar 

  • FAO (2017) The state of food security and nutrition in the world. FAO, Rome

    Google Scholar 

  • Flor HH (1971) Current status of the gene-for -gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • Fu B, Chen Y, Li N, Ma H, Kong Z, Zhang L, Jia H, Ma Z (2013) pmX: a recessive powdery mildew resistance gene at the Pm4 locus identified in wheat landrace Xiaohongpi. Theor Appl Genet 126:913–921

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Liu A, Wang Y, Feng D, Gao J, Li X, Liu S, Wang H (2008) Pm23: a new allele of Pm4 located on chromosome 2AL in wheat. Theor Appl Genet 117:1205–1212

    Article  CAS  PubMed  Google Scholar 

  • Hao Y, Parks R, Cowger C, Chen Z, Wang Y, Bland D, Murphy JP, Guedira M, Brown-Guedira G, Johnson J (2015) Molecular characterization of a new powdery mildew resistance gene Pm54 in soft red winter wheat. Theor Appl Genet 128:465–476

    Article  CAS  PubMed  Google Scholar 

  • Hao M, Liu M, Luo J et al (2018) Introgression of powdery mildew resistance gene Pm56 on rye chromosome arm 6RS into wheat. Front Plant Sci 9:1040

    Article  PubMed  PubMed Central  Google Scholar 

  • He ZH (2001) A history of wheat breeding in China. F., Mexico, CIMMYT, Mexico D

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distances from recombination values. Ann Eugen 12:172–175

    Article  Google Scholar 

  • Lander ES, Green P, Abrahamson J et al (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  CAS  PubMed  Google Scholar 

  • Li G, Xu X, Bai G et al (2016) Identification of novel powdery mildew resistance sources in wheat. Crop Sci 56:18171830

    Google Scholar 

  • Li N, Jia H, Kong Z, Tang W, Ding Y, Liang J, Ma H, Ma Z (2017) Identification and marker-assisted transfer of a new powdery mildew resistance gene at the Pm4 locus in common wheat. Mol Breed 37:79

    Article  CAS  Google Scholar 

  • Li G, Carver BF, Cowger C, Bai G, Xu X (2018) Pm223899, a new recessive powdery mildew resistance gene identified in Afghanistan landrace PI 223899. Theor Appl Genet 131:2775–2783

    Article  CAS  PubMed  Google Scholar 

  • Liu W, Koo DH, Xia Q et al (2017) Homoeologous recombination-based transfer and molecular cytogenetic mapping of powdery mildew-resistant gene Pm57 from Aegilops searsii into wheat. Theor Appl Genet 130:841–848

    Article  CAS  PubMed  Google Scholar 

  • McIntosh RA, Yamazaki Y, Dubcovsky J et al (2013) (2013) Catalogue of gene symbols for wheat. In: Ogihara Y (ed) Proceedings of the 12th international wheat genet symposium. Japan, Yokohama, pp 8–13

    Google Scholar 

  • McIntosh RA, Dubcovsky J, Rogers WJ et al (2017) Catalogue of gene symbols for wheat. Suppl Annu Wheat Newsl 53:1–20

    Google Scholar 

  • Mohler V, Bauer C, Schweizer G et al (2013) Pm50: a new powdery mildew resistance gene in common wheat derived from cultivated emmer. J Appl Genet 54:259–263

    Article  CAS  PubMed  Google Scholar 

  • Niu JS, Wang BQ, Wang YH et al (2008) Chromosome location and microsatellite markers linked to a powdery mildew resistance gene in wheat line ‘Lankao 90 (6)’. Plant Breed 127:346–349

    Article  CAS  Google Scholar 

  • Niu Z, Chao S, Cai X et al (2018) Molecular and cytogenetic characterization of six wheat-Aegilops markgrafii disomic addition lines and their resistance to rusts and powdery mildew. Front Plant Sci https://doi.org/10.3389/fpls.2018.01616

    Article  PubMed  PubMed Central  Google Scholar 

  • Petersen S, Lyerly JH, Worthington ML et al (2015) Mapping of powdery mildew resistance gene Pm53 introgressed from Aegilops speltoides into soft red winter wheat. Theor Appl Genet 128:303–312

    Article  CAS  PubMed  Google Scholar 

  • Schmolke M, Mohler V, Hartl L et al (2012) A new powdery mildew resistance allele at the Pm4 wheat locus transferred from einkorn (Triticum monococcum). Mol Breed 29:449–456

    Article  CAS  Google Scholar 

  • Shi QQ, Fan JR, Zhou YL et al (2015) Triadimefon sensitivity and its correlation with virulence population of Blumeria graminis f. sp. tritici in some wheat growing areas in 2012. Acta Phytopathol Sin 45:181–187

    Google Scholar 

  • Singh RP, Singh PK, Rutkoski J et al (2016) Disease impact on wheat yield potential and prospects of genetic control. Annu Rev Phytopathol 54:303–322

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Hu J, Song W et al (2018) Pm61: a recessive gene for resistance to powdery mildew in wheat landrace Xuxusanyuehuang identified by comparative genomics analysis. Theor Appl Genet 131:2085–2097

    Article  CAS  PubMed  Google Scholar 

  • Szunics L, Szunics L, Vida G et al (2001) Dynamics of changes in the races and virulence of wheat powdery mildew in Hungary between 1971 and 1999. In: Bedo Z, Lang L (eds) Wheat in a global environment. Springer, Dordrecht, pp 373–379

    Chapter  Google Scholar 

  • Tan C, Li G, Cowger C et al (2018) Characterization of Pm59, a novel powdery mildew resistance gene in Afghanistan wheat landrace PI 181356. Theor Appl Genet 131:1145–1152

    Article  CAS  PubMed  Google Scholar 

  • Tan C, Li G, Cowger C et al (2019) Characterization of Pm63, a powdery mildew resistance gene in Iranian landrace PI 628024. Theor Appl Genet 132:1137–1144

    Article  CAS  PubMed  Google Scholar 

  • Tang X, Cao X, Xu X et al (2017) Effects of climate change on epidemics of powdery mildew in winter wheat in China. Plant Dis 101:1753–1760

    PubMed  Google Scholar 

  • The TT, McIntosh RA, Bennett FGA (1979) Cytogenetical studies in wheat. IX. Monosomic analyses, telocentric mapping and linkage relationships of genes Sr21, Pm4, and Mle. Aust J Biol Sci 32:115–125

    Article  Google Scholar 

  • Tilman D, Cassman KG, Matson PA et al. (2002) Agricultural sustainability and intensive production practices. Nat Lond 418:671–677. https://doi.org/10.1038/nature01014

    Article  CAS  Google Scholar 

  • Ullah KN, Li N, Shen T et al (2018) Fine mapping of powdery mildew resistance gene Pm4e in bread wheat (Triticum aestivum L.). Planta 208:1319–1328

    Article  CAS  Google Scholar 

  • Wang X, Wang L (2016) GMATA: an integrated software package for genome-scale SSR mining, marker development and viewing. Front Plant Sci 7:1350

    PubMed  PubMed Central  Google Scholar 

  • Wang ZL, Li LH, He ZH et al (2005) Seedling and adult plant resistance to powdery mildew in Chinese bread wheat cultivars and lines. Plant Dis 89:457–463

    Article  CAS  PubMed  Google Scholar 

  • Wiersma AT, Pulman JA, Brown LK et al (2017) Identification of Pm58 from Aegilops tauschii. Theor Appl Genet 130:1123–1133

    Article  CAS  PubMed  Google Scholar 

  • Wolfe MS (1967) Physiologic specialization of Erysiphe graminis f. sp. tritici in the United Kingdom, 1964–1965. Trans Br Mycol Soc 50:631–640

    Article  Google Scholar 

  • Wu QH, Chen XX, Li D et al (2018) Large scale detection of powdery mildew resistance genes in wheat via SNP and bulked segregate analysis. Acta Agron Sin 44:1–14

    Article  CAS  Google Scholar 

  • Yang LJ, Zeng FS, Gong SJ et al (2013) Powdery mildew resistance analysis and gene postulation of 68 wheat cultivars. Sci Agric Sin 46:3354–3368

    CAS  Google Scholar 

  • Zhan H, Li G, Zhang X et al (2014) Chromosomal location and comparative genomics analysis of powdery mildew resistance gene Pm51 in a putative wheat-Thinopyrum ponticum introgression line. PLoS ONE 9:e113455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Sun B, Chen J et al (2016) Pm55, a developmental-stage and tissue-specific powdery mildew resistance gene introgressed from Dasypyrum villosum into common wheat. Theor Appl Genet 129:1975–1984

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Fan Y, Kong L et al (2018) Pm62, an adult-plant powdery mildew resistance gene introgressed from Dasypyrum villosum chromosome arm 2VL into wheat. Theor Appl Genet 131:2613–2620

    Article  CAS  PubMed  Google Scholar 

  • Zhao ZH, Sun HG, Song W et al (2013) Genetic analysis and detection of the gene MlX99 on chromosome 2BL conferring resistance to powdery mildew in the wheat cultivar Liangxing 99. Theor Appl Genet 126:30813089

    Google Scholar 

  • Zhu ZD, Kong XY, Zhou RH et al (2004) Identification and microsatellite markers of a resistance gene to powdery mildew in common wheat introgressed from Triticum durum. Acta Bot Sin (English edition) 46:867–872

    Google Scholar 

  • Zhu ZD, Zhou RH, Jia JZ (2005) Identification of powdery mildew resistance genes in advanced wheat lines using molecular markers. Acta Agron Sin 31:977–982

    CAS  Google Scholar 

  • Zou S, Wang H, Li Y et al (2018) The NB-LRR gene Pm60 confers powdery mildew resistance in wheat. New Phytol 18:298–309

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are very grateful to Dr. Robert McIntosh of Sydney University for his insightful comments and suggestions. We also thank M. Hargrove and R. Whetten for excellent technical assistance. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the USDA. The USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyang Xu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Communicated by Thomas Miedaner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Cowger, C., Wang, X. et al. Characterization of Pm65, a new powdery mildew resistance gene on chromosome 2AL of a facultative wheat cultivar. Theor Appl Genet 132, 2625–2632 (2019). https://doi.org/10.1007/s00122-019-03377-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03377-2

Navigation