Skip to main content
Log in

QTL analysis in multiple sorghum populations facilitates the dissection of the genetic and physiological control of tillering

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

A QTL model for the genetic control of tillering in sorghum is proposed, presenting new opportunities for sorghum breeders to select germplasm with tillering characteristics appropriate for their target environments.

Abstract

Tillering in sorghum can be associated with either the carbon supply–demand (S/D) balance of the plant or an intrinsic propensity to tiller (PTT). Knowledge of the genetic control of tillering could assist breeders in selecting germplasm with tillering characteristics appropriate for their target environments. The aims of this study were to identify QTL for tillering and component traits associated with the S/D balance or PTT, to develop a framework model for the genetic control of tillering in sorghum. Four mapping populations were grown in a number of experiments in south east Queensland, Australia. The QTL analysis suggested that the contribution of traits associated with either the S/D balance or PTT to the genotypic differences in tillering differed among populations. Thirty-four tillering QTL were identified across the populations, of which 15 were novel to this study. Additionally, half of the tillering QTL co-located with QTL for component traits. A comparison of tillering QTL and candidate gene locations identified numerous coincident QTL and gene locations across populations, including the identification of common non-synonymous SNPs in the parental genotypes of two mapping populations in a sorghum homologue of MAX1, a gene involved in the control of tiller bud outgrowth through the production of strigolactones. Combined with a framework for crop physiological processes that underpin genotypic differences in tillering, the co-location of QTL for tillering and component traits and candidate genes allowed the development of a framework QTL model for the genetic control of tillering in sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Alam MM, Hammer GL, van Oosterom EJ, Cruickshank AW, Hunt CH, Jordan DR (2014) A physiological framework to explain genetic and environmental regulation of tillering in sorghum. New Phytol 203:155–167

    Article  PubMed  CAS  Google Scholar 

  • Barton NH, Keightley PD (2002) Understanding quantitative genetic variation. Nat Rev Genet 3:11–21

    Article  PubMed  CAS  Google Scholar 

  • Beveridge CA, Kyozuka J (2010) New genes in the strigolactone-related shoot branching pathway. Curr Opin Plant Biol 13:34–39

    Article  PubMed  CAS  Google Scholar 

  • Bos HJ, Neuteboom JH (1998) Morphological analysis of leaf and tiller number dynamics of wheat (Triticum aestivum L.): responses to temperature and light intensity. Ann Bot 81:131–139

    Article  Google Scholar 

  • Butler DG, Cullis BR, Gilmour AR, Gogel BJ (2007) ASReml-R reference manual. Release 2.0. Technical Report, Queensland Department of Primary Industries

  • Development Core Team R (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. ISBN 3-900051-07-0

    Google Scholar 

  • Doust AN (2007) Grass architecture: genetic and environmental control of branching. Curr Opin Plant Biol 10:21–25

    Article  PubMed  Google Scholar 

  • Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH (2006) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305

    Article  PubMed  CAS  Google Scholar 

  • Fiorani F, Beemster GTS, Bultynck L, Lambers H (2000) Can meristematic activity determine variation in leaf size and elongation rate among four Poa species? A kinematic study. Plant Physiol 124:845–855

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gilmour AR, Cullis BR, Verbyla AP (1997) Accounting for natural and extraneous variation in the analysis of field experiments. J Agric Biol Environ Stat 2:269–273

    Article  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot JP, Letisse F, Matusova R, Danoun S, Portais JC, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  PubMed  CAS  Google Scholar 

  • Hammer GL (2006) Pathways to prosperity—breaking the yield barrier in sorghum. Agric Sci 19:16–22 J Aust Inst Agric Sci Technol

    Google Scholar 

  • Hammer GL, Hill K, Schrodter GN (1987) Leaf-area production and senescence of diverse grain-sorghum hybrids. Field Crop Res 17:305–317

    Article  Google Scholar 

  • Hammer GL, Carberry PS, Muchow RC (1993) Modeling genotypic and environmental-control of leaf-area dynamics in grain-sorghum. 1. Whole plant-level. Field Crop Res 33:293–310

    Article  Google Scholar 

  • Hammer G, Cooper M, Tardieu F, Welch S, Walsh B, van Eeuwijk F, Chapman S, Podlich D (2006) Models for navigating biological complexity in breeding improved crop plants. Trends Plant Sci 11:587–593

    Article  PubMed  CAS  Google Scholar 

  • Hart GE, Schertz KF, Peng Y, Syed NH (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theor Appl Genet 103:1232–1242

    Article  CAS  Google Scholar 

  • Hastie T, Tibshirani R, Narasimhan B, Chu G (2012) impute: Imputation for Microarray Data, R package version 1.32.0

  • Kim HK (2008) Modelling genetic and environmental control of tillering in sorghum, PhD thesis, University of Queensland, Australia, p 188

  • Kim HK, Luquet D, van Oosterom E, Dingkuhn M, Hammer G (2010a) Regulation of tillering in sorghum: genotypic effects. Ann Bot 106:69–78

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Kim HK, van Oosterom E, Dingkuhn M, Luquet D, Hammer G (2010b) Regulation of tillering in sorghum: environmental effects. Ann Bot 106:57–67

    Article  PubMed  PubMed Central  Google Scholar 

  • Kouressy M, Dingkuhn M, Vaksmann M, Heinemann AB (2008) Adaptation to diverse semi-arid environments of sorghum genotypes having different plant type and sensitivity to photoperiod. Agric For Meteorol 148:357–371

    Article  Google Scholar 

  • Lafarge TA, Hammer GL (2002) Tillering in grain sorghum over a wide range of population densities: modelling dynamics of tiller fertility. Ann Bot 90:99–110

    Article  PubMed  CAS  Google Scholar 

  • Lafarge M, Loiseau P (2002) Tiller density and stand structure of tall fescue swards differing in age and nitrogen level. Eur J Agron 17:209–219

    Article  Google Scholar 

  • Lander E, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits by using RFLP linkage maps. Genetics 136:185–199

    Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer Associates Inc Sunderland, Sunderland

    Google Scholar 

  • Mace ES, Jordan DR (2011) Integrating sorghum whole genome sequence information with a compendium of sorghum QTL studies reveals uneven distribution of QTL and of gene-rich regions with significant implications for crop improvement. Theor Appl Genet 123:169–191

    Article  PubMed  CAS  Google Scholar 

  • Mace ES, Rami JF, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput Diversity Array Technology (DArT) markers. BMC Plant Biol 9:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Mace ES, Tai S, Gilding EK, Li Y, Prentis PJ, Bian L, Campbell BC, Hu W, Innes DJ, Han X, Cruickshank A, Dai C, Frère C, Zhang H, Hunt CH, Wang X, Shatte T, Wang M, Su Z, Li J, Lin X, Godwin ID, Jordan DR, Wang Jl (2013) Whole genome sequencing reveals untapped genetic potential in Africa’s indigenous cereal crop sorghum. Nat Commun 4:2320

    PubMed  PubMed Central  Google Scholar 

  • Manly KF, Cudmore JRH, Meer JM (2001) Map Manager QTX, cross-platform software for genetic mapping. Mamm Genome 12:930–932

    Article  PubMed  CAS  Google Scholar 

  • McSteen P (2009) Hormonal regulation of branching in grasses. Plant Physiol 149:46–55

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • McSteen P, Leyser O (2005) Shoot branching. Annu Rev Plant Biol 56:353–374

    Article  PubMed  CAS  Google Scholar 

  • Miller BC, Hill JE, Roberts SR (1991) Plant-population effects on growth and yield in water-seeded rice. Agron J 83:291–297

    Article  Google Scholar 

  • Murray SC, Sharma A, Rooney WL, Klein PE, Mullet JE, Mitchell SE, Kresovich S (2008) Genetic improvement of sorghum as a biofuel feedstock: I. QTL for stem sugar and grain nonstructural carbohydrates. Crop Sci 48:2165–2179

    Article  Google Scholar 

  • Paterson AH, Schertz KF, Lin YR, Liu SC, Chang YL (1995) The weediness of wild plants - molecular analysis of genes influencing dispersal and persistence of johnsongrass, Sorghum halepense (L.) Pers. Proc Nati Acad Sci USA 92:6127–6131

    Article  CAS  Google Scholar 

  • Paterson AH et al (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Shiringani AL, Frisch M, Friedt W (2010) Genetic mapping of QTLs for sugar-related traits in a RIL population of Sorghum bicolor L. Moench. Theor Appl Genet 121:323–336

    Article  PubMed  CAS  Google Scholar 

  • Shyamsunder J, Parameshwarappa R, Nagaraja HK, Kajjari NB (1975) A new genotype in sorghum resistant to midge (Contarinia sorghicola). Sorghum Newsletter 18:33

  • Smith A, Cullis B, Nelson M (2011) Detecting QTL for photoperiod sensitivity in a Brassica napus doubled haploid population using a linear mixed model with correlated marker effects, Centre for Statistical and Survey Methodology, University of Wollongong, Working paper 03–11

  • Symonds VV, Godoy AV, Alconada T, Botto JF, Juenger TE, Casal JJ, Lloyd AM (2005) Mapping quantitative trait loci in multiple populations of Arabidopsis thaliana identifies natural allelic variation for trichome density. Genetics 169:1649–1658

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Takai T, Yonemaru J, Kaidai H, Kasuga S (2012) Quantitative trait locus analysis for days-to-heading and morphological traits in an RIL population derived from an extremely late flowering F1 hybrid of sorghum. Euphytica 187:411–420

    Article  Google Scholar 

  • Turner NC (2004) Agronomic options for improving rainfall-use efficiency of crops in dryland farming systems. J Exp Bot 55:2413–2425

    Article  PubMed  CAS  Google Scholar 

  • Upadhyaya HD, Wang YH, Sharma S, Singh S, Hasenstein KH (2012) SSR markers linked to kernel weight and tiller number in sorghum identified by association mapping. Euphytica 187:401–410

    Article  CAS  Google Scholar 

  • van Oosterom EJ, Borrell AK, Deifel KS, Hammer GL (2011) Does increased leaf appearance rate enhance adaptation to postanthesis drought stress in sorghum? Crop Sci 51:2728–2740

    Article  Google Scholar 

  • Verbyla AP, Cullis BR, Thompson R (2007) The analysis of QTLs by simultaneous use of the full linkage map. Theor Appl Genet 116:95–111

    Article  PubMed  Google Scholar 

  • Voorrips RE (2002) MapChart: Software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Li J (2011) Branching in rice. Curr Opin Plant Biol 14:94–99

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2011) Windows QTL Cartographer 2.5, Department of Statistics, North Carolina State University, Raleigh

  • Yang J, Hu CC, Hu H, Yu RD, Xia Z, Ye XZ, Zhu J (2008) QTLNetwork: mapping and visualizing genetic architecture of complex traits in experimental populations. Bioinformatics 24:721–723

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Queensland Government and the Grains Research and Development Corporation (GRDC) for providing funding for this research.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. S. Mace.

Additional information

Communicated by Hai-Chun Jing.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 1642 kb)

Supplementary material 2 (DOC 965 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alam, M.M., Mace, E.S., van Oosterom, E.J. et al. QTL analysis in multiple sorghum populations facilitates the dissection of the genetic and physiological control of tillering. Theor Appl Genet 127, 2253–2266 (2014). https://doi.org/10.1007/s00122-014-2377-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-014-2377-9

Keywords

Navigation