Skip to main content
Log in

Mapping QTLs for root system architecture of maize (Zea mays L.) in the field at different developmental stages

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Root system architecture (RSA) is seldom considered as a selection criterion to improve yield in maize breeding, mainly because of the practical difficulties with their evaluation under field conditions. In the present study, phenotypic profiling of 187 advanced-backcross BC4F3 maize lines (Ye478 × Wu312) was conducted at different developmental stages under field conditions at two locations (Dongbeiwang in 2007 and Shangzhuang in 2008) for five quantitative root traits. The aims were to (1) understand the genetic basis of root growth in the field; (2) investigate the contribution of root traits to grain yield (GY); and (3) detect QTLs controlling root traits at the seedling (I), silking (II) and maturation (III) stages. Axial root (AR)-related traits showed higher heritability than lateral root (LR)-related traits, which indicated stronger environmental effects on LR growth. Among the three developmental stages, root establishment at stage I showed the closest relationship with GY (r = 0.33–0.43, P < 0.001). Thirty QTLs for RSA were detected in the BC4F3 population and only 13.3 % of the QTLs were detected at stage III. Most important QTLs for root traits were located on chromosome 6 near the locus umc1257 (bin 6.02–6.04) at stage I, and chromosome 10 near the locus umc2003 (bin 10.04) for number of AR across all three developmental stages. The regions of chromosome 7 near the locus bnlg339 (bin 7.03) and chromosome 1 near the locus bnlg1556 (bin 1.07) harbored QTLs for both GY- and LR-related traits at stages I and II, respectively. These results help to understand the genetic basis of root development under field conditions and their contribution to grain yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Bohn M, Novais J, Fonseca R, Tuberosa R, Grift TE (2006) Genetic evaluation of root complexity in maize. Acta Agron Hunga 54:291–303

    Article  CAS  Google Scholar 

  • Cai HG, Liu JC, Mi GH, Yuan LX, Chen XH, Chen FJ, Zhang FS (2011) QTL mapping for root traits around flowering stage of maize under field condition. Plant Nutr Fert Sci 17:317–324

    CAS  Google Scholar 

  • Chen J, Xu L, Cai Y, Xu J (2008a) QTL mapping of phosphorus efficiency and relative biologic characteristics in maize (Zea mays L.) at two sites. Plant Soil 313:251–266

    Article  CAS  Google Scholar 

  • Chen Y, Chao Q, Tan G, Zhao J, Zhang M, Ji Q, Xu M (2008b) Identification and fine-mapping of a major QTL conferring resistance against head smut in maize. Theor Appl Genet 117:1241–1252

    Article  PubMed  CAS  Google Scholar 

  • Chun L, Mi G, Li J, Chen F, Zhang F (2005) Genetic analysis of maize root characteristics in response to low nitrogen stress. Plant Soil 276:369–382

    Article  CAS  Google Scholar 

  • Cochran WG, Cox GM (1957) Experimental Designs, 2nd edn. Wiley, New York

    Google Scholar 

  • de Dorlodot S, Forster B, Pagès L, Price A, Tuberosa R, Draye X (2007) Root system architecture: opportunities and constraints for genetic improvement of crops. Trend Plant Sci 12:474–481

    Article  Google Scholar 

  • Frary A, Nesbitt TC, Frary A, Grandillo S, Van Der Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD (2000) Fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science 289:85–88

    Article  PubMed  CAS  Google Scholar 

  • Gower JC (1966) Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338

    Google Scholar 

  • Guingo E, Hèbert Y, Charcosset A (1998) Genetic analysis of root traits in maize. Agronomie 18:225–235

    Article  Google Scholar 

  • Hallauer AR, Miranda JB (1981) Quantitative genetics in maize breeding. Iowa State University Press, Ames

    Google Scholar 

  • Hammer GL, Dong SZ, McLean G, Doherty A, Messina C, Schusler J, Zinselmeier C, Paszkiewicz S, Cooper M (2009) Can changes in canopy and/or root system architecture explain historical maize yield trends in the US corn belt? Crop Sci 49:299–312

    Article  Google Scholar 

  • Hébert Y, Barrière Y, Bertholeau JC (1992) Root lodging resistance in forage maize: genetic variability of root system and aerial part. Maydica 37:173–183

    Google Scholar 

  • Hochholdinger F, Tuberosa R (2009) Genetic and genomic dissection of maize root development and architecture. Curr Opin Plant Biol 12:172–177

    Article  PubMed  CAS  Google Scholar 

  • Hund A, Fracheboud Y, Soldati A, Frascaroli E, Salvi S, Stamp P (2004) QTL controlling root and shoot traits of maize seedlings under cold stress. Theor Appl Genet 109:618–629

    Article  PubMed  CAS  Google Scholar 

  • Hund A, Ruta N, Liedgens M (2009a) Rooting depth and water use efficiency of tropical maize inbred lines, differing in drought tolerance. Plant Soil 318:311–325

    Article  CAS  Google Scholar 

  • Hund A, Trachsel S, Stamp P (2009b) Growth of axile and lateral roots of maize: one development of a phenotying platform. Plant Soil 325:335–349

    Article  CAS  Google Scholar 

  • Hund A, Reimer R, Messmer R (2011) A consensus map of QTLs controlling the root length of maize. Plant Soil 344:143–158

    Article  CAS  Google Scholar 

  • Jenison JR, Shank DB, Penny LH (1981) Root characteristics of 44 maize inbreds evaluated in four environments. Crop Sci 21:233–237

    Article  Google Scholar 

  • Jordan WR, Dugas WA Jr, Shouse PJ (1983) Strategies for crop improvement for drought-prone regions. Agr Water M 7:281–299

    Article  Google Scholar 

  • Kaeppler SM, Parke JL, Mueller SM, Senior L, Stuber C, Tracy WF (2000) Variation among maize inbred lines and detection of quantitative trait loci for growth at low phosphorus and responsiveness to arbuscular mycorrhizal fungi. Crop Sci 40:358–364

    Article  Google Scholar 

  • Kenrick P (2002) The origin of roots. In: Waisel Y et al (eds) Plant roots: the hidden half, 3rd edn. Marcel Dekker, New York, pp 295–322

    Google Scholar 

  • Ku L, Sun Z, Wang C, Zhang J, Zhao R, Liu H, Tai G, Chen Y (2011) QTL mapping and epistasis analysis of brace root traits in maize. Mol Breed. doi:10.1007/s11032-011-9655-x

    Google Scholar 

  • Landi P, Albrecht B, Giuliani MM, Sanguineti MC (1998) Seedling characteristics in hydroponic culture and field performance of maize genotypes with different resistance to root lodging. Maydica 43:111–116

    Google Scholar 

  • Landi P, Sanguineti MC, Darrah LL, Giuliani MM, Salvi S, Conti S, Tuberosa R (2002) Detection of QTLs for vertical root pulling resistance in maize and overlap with QTLs for root traits in hydroponics and for grain yield under different water regimes. Maydica 47:233–243

    Google Scholar 

  • Landi P, Giuliani S, Salvi S, Ferri M, Tuberosa R, Sanguineti MC (2010) Characterization of root-yield-1.06, a major constitutive QTL for root and agronomic traits in maize across water regimes. J Exp Bot 61:3553–3562

    Article  PubMed  CAS  Google Scholar 

  • Lebreton C, Lazic-Jancic V, Steed A, Pekic S, Quarrie SA (1995) Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J Exp Bot 46:853–865

    Article  CAS  Google Scholar 

  • Liu J, Li J, Chen F, Zhang F, Ren T, Zhuang Z, Mi G (2008) Mapping QTLs for root traits under different nitrate levels at the seedling stage in maize (Zea mays L.). Plant Soil 305:253–265

    Article  CAS  Google Scholar 

  • Liu J, Chen F, Olokhnuud C, Glass ADM, Tong Y, Zhang F, Mi G (2009) Root size and nitrogen-uptake activity in two maize (Zea mays L.) inbred lines differing in nitrogen-use efficiency. J Plant Nutri Soil Sci 172:230–236

    Article  CAS  Google Scholar 

  • Liu JC, Cai HG, Chu Q, Chen XH, Chen FJ, Yuan LX, Mi GH, Zhang FS (2011) Genetic analysis of vertical root pulling resistance (VRPR) in maize using two genetic populations. Mol Breed 28:463–474

    Article  Google Scholar 

  • Lynch J (1995) Root architecture and plant productivity. Plant Physiol 109:7–13

    PubMed  CAS  Google Scholar 

  • Lynch JP (2007) Turner review no. 14. Roots of the second green revolution. Aust J Bot 55:493–512

    Article  Google Scholar 

  • Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156:1041–1049

    Article  PubMed  CAS  Google Scholar 

  • Lynch J, van Beem JJ (1993) Growth and architecture of seedling roots of common bean genotypes. Crop Sci 33:1253–1257

    Article  Google Scholar 

  • Maurer H, Melchinger A, Frisch M (2008) Population genetic simulation and data analysis with Plabsoft. Euphytica 161:133–139

    Article  Google Scholar 

  • Messmer R, Fracheboud Y, Bänziger M, Vargas M, Stamp P, Ribaut J-M (2009) Drought stress and tropical maize: QTL-by-environment interactions and stability of QTLs across environments for yield components and secondary traits. Theor Appl Genet 119:913–930

    Article  PubMed  Google Scholar 

  • Mode GJ, Robinson HE (1959) Pleiotropism and the genetic variance and co variance. Biometrics 15:518–537

    Article  Google Scholar 

  • Panaud O, Chen X, McCouch SR (1996) Development of microsatellite markers and characterization of simple sequence length polymorphism (SSLP) in rice (Oryza sativa L.). Mol Gen Genet 252:597–607

    PubMed  CAS  Google Scholar 

  • R Development Core Team (2010) R: a language and environment for statistical computing, R Foundation for Statistical Computing. http://www.R-project.org

  • Ribaut JM, Hoisington DA, Deutsch JA, Jiang C, Gonzalez-De-Leon D (1996) Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor Appl Genet 92:905–914

    Article  CAS  Google Scholar 

  • Rogers SO, Bendich AJ (1988) Extraction of DNA from plant tissues. Plant Mol Biol Manual A 6:1110

    Google Scholar 

  • Ruta N, Liedgens M, Fracheboud Y, Stamp P, Hund A (2010a) QTLs for the elongation of axile and lateral roots of maize in response to low water potential. Theor Appl Genet 120:621–631

    Article  PubMed  CAS  Google Scholar 

  • Ruta N, Stamp P, Liedgens M, Fracheboud Y, Hund A (2010b) Collocations of QTLs for seedling traits and yield components of tropical maize under water stress conditions. Crop Sci 50:1385–1392

    Article  CAS  Google Scholar 

  • Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Meeley R, Ananiev EV, Svitashev S, Bruggemann E, Li B, Hainey CF, Radovic S, Zaina G, Rafalski JA, Tingey SV, Miao GH, Phillips RL, Tuberosa R (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Nati Acad Sci USA 104:11376–11381

    Article  CAS  Google Scholar 

  • Salvi S, Corneti S, Bellotti M, Carraro N, Sanguineti M, Castelletti S, Tuberosa R (2011) Genetic dissection of maize phenology using an intraspecific introgression library. BMC Plant Biol 11:4

    Article  PubMed  CAS  Google Scholar 

  • Searle SR (1971) Linear models. Wiley, New York. ISBN 0-471-18499-3

    Google Scholar 

  • Senior ML, Heun M (1993) Mapping maize microsatellites and polymerase chain reaction confirmation of the targeted repeats using a CT primer. Genome 36:884–889

    Article  PubMed  CAS  Google Scholar 

  • Shimizu A, Kato K, Komatsu A, Motomura K, Ikehashi H (2008) Genetic analysis of root elongation induced by phosphorus deficiency in rice (Oryza sativa L.): fine QTL mapping and multivariate analysis of related traits. Theor Appl Genet 117:987–996

    Article  PubMed  CAS  Google Scholar 

  • Snedecor W, Cochran WG (1980) Statistical methods. 7th edn. Iowa State University Press, Ames

  • Szalma SJ, Hostert BM, LeDeaux JR, Stuber CW, Holland JB (2007) QTL mapping with near-isogenic lines in maize. Theor Appl Genet 114:1211–1228

    Article  PubMed  CAS  Google Scholar 

  • Tian F, Li DJ, Fu Q, Zhu ZF, Fu YC, Wang XK, Sun CQ (2006a) Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theor Appl Genet 112:570–580

    Article  PubMed  CAS  Google Scholar 

  • Tian F, Zhu Z, Zhang B, Tan L, Fu Y, Wang X, Sun CQ (2006b) Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.). Theor Appl Genet 113:619–629

    Article  PubMed  CAS  Google Scholar 

  • Trachsel S, Messmer R, Stamp P, Hund A (2009) Mapping of QTLs for lateral and axile root growth of tropical maize. Theor Appl Genet 119:1413–1424

    Article  PubMed  CAS  Google Scholar 

  • Trachsel S, Kaeppler S, Brown K, Lynch J (2011) Shovelomics: high throughput phenotyping of maize (Zea mays L.) root architecture in the field. Plant Soil 341:75–87

    Article  CAS  Google Scholar 

  • Tuberosa R, Sanguineti MC, Landi P, Giuliani MM, Salvi S, Conti S (2002) Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol Biol 48:697–712

    Article  PubMed  CAS  Google Scholar 

  • Tuberosa R, Salvi S, Sanguineti MC, Maccaferri M, Giuliani S, Landi P (2003) Searching for quantitative trait loci controlling root traits in maize: a critical appraisal. Plant Soil 255:35–54

    Article  CAS  Google Scholar 

  • Utz HF (1993) PLABSTAT. Institute of Plant Breeding, Seed Science, and Population Genetics, University of Hohenheim, Stuttgart. Available at http://www.plant-breeding.uni-hohenheim.de/software

  • Utz HF, Melchinger AE (1996) PLABQTL: a program for composite interval mapping of QTL. J Quant Loci (2)1. Available at (https://www.plant-breeding.uni-hohenheim.de/software). Accessed 10 Sept 2004

  • Utz HF, Melchinger AE, Schon CC (2000) Bias and sampling error of the estimated proportion of genotypic variance explained by quantitative trait loci determined from experimental data in maize using cross validation and validation with independent samples. Genetics 154:1839–1849

    PubMed  Google Scholar 

  • Wiesler F, Horst WJ (1994) Root growth and nitrate utilization of maize cultivars under field conditions. Plant Soil 163:267–277

    Article  CAS  Google Scholar 

  • Wilson HK (1930) Plant characters as indices in relation to the ability of corn strains to withstand lodging. J Am Soc Agron 22:453–458

    Article  Google Scholar 

  • Yan H, Shang A, Peng Y, Yu P, Li C (2011) Covering middle leaves and ears reveals differential regulatory roles of vegetative and reproductive organs in root growth and nitrogen uptake in maize. Crop Sci 51:265–272

    Article  Google Scholar 

  • Zhu J, Kaeppler SM, Lynch JP (2005) Mapping of QTLs for lateral root branching and length in maize (Zea mays L.) under differential phosphorus supply. Theor Appl Genet 111:688–695

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Mickelson SM, Kaeppler SM, Lynch JP (2006) Detection of quantitative trait loci for seminal root traits in maize (Zea mays L.) seedlings grown under differential phosphorus levels. Theor Appl Genet 113:1–10

    Article  PubMed  CAS  Google Scholar 

  • Zhu J, Ingram PA, Benfey PN, Elich T (2011) From lab to field, new approaches to phenotyping root system architecture. Curr Opin Plant Bio 14:310–317

    Article  Google Scholar 

  • Zobel R (1996) Genetic control of root systems. In: Waisel Y, Eshel A, Kafkafi U (eds) Plant roots: the hidden half, 2nd edn. Marcel Dekker, New York, pp 21–30

    Google Scholar 

Download references

Acknowledgments

This study was supported financially by the Ministry of Science and Technology of China (973 Program 2011CB100305), the National Science Foundation of China (30890130, 31121062, 31101611 and 31172015). The collaboration between LY and JCR was supported by the Robert Bosch Foundation (32.5.8003.0035.0).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fanjun Chen or Lixing Yuan.

Additional information

Communicated by E. Carbonell.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cai, H., Chen, F., Mi, G. et al. Mapping QTLs for root system architecture of maize (Zea mays L.) in the field at different developmental stages. Theor Appl Genet 125, 1313–1324 (2012). https://doi.org/10.1007/s00122-012-1915-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1915-6

Keywords

Navigation