Skip to main content
Log in

Genetic analysis of leaf rust resistance genes and associated markers in the durable resistant wheat cultivar Sinvalocho MA

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

In the cross of the durable leaf rust resistant wheat Sinvalocho MA and the susceptible line Gama6, four specific genes were identified: the seedling resistance gene Lr3, the adult plant resistance (APR) genes LrSV1 and LrSV2 coming from Sinvalocho MA, and the seedling resistance gene LrG6 coming from Gama6. Lr3 was previously mapped on 6BL in the same cross. LrSV1 was mapped on chromosome 2DS where resistance genes Lr22a and Lr22b have been reported. Results from rust reaction have shown that LrSV1 from Sinvalocho is not the same allele as Lr22b and an allelism test with Lr22a showed that they could be alleles or closely linked genes. LrSV1 was mapped in an 8.5-cM interval delimited by markers gwm296 distal and gwm261 proximal. Adult gene LrSV2 was mapped on chromosome 3BS, cosegregating with gwm533 in a 7.2-cM interval encompassed by markers gwm389 and gwm493, where other disease resistance genes are located, such as seedling gene Lr27 for leaf rust, Sr2 for stem rust, QTL Qfhs.ndsu-3BS for resistance to Fusarium gramineum and wheat powdery mildew resistance. The gene LrG6 was mapped on chromosome 2BL, with the closest marker gwm382 at 0.6 cM. Lines carrying LrSV1, LrSV2 and LrG6 tested under field natural infection conditions, showed low disease infection type and severity, suggesting that this kind of resistance can be explained by additive effects of APR and seedling resistance genes. The identification of new sources of resistance from South American land races and old varieties, supported by modern DNA technology, contributes to sustainability of agriculture through plant breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Antonelli EF (1983) Principal pathogens affecting the production of wheat in Argentina. Cereal breeding and production symposium, Special Report 718, Oregon State University, Argentina 7–12 November 1983, pp 377–396

  • Bartos P, Dyck PL, Samborski DJ (1969) Adult-plant leaf rust resistance in Thatcher and Marquis wheat, a genetic analysis of the host-parasite interaction. Can J Bot 47:267–269

    Article  Google Scholar 

  • Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Anal Biochem 196:80–83

    Article  PubMed  CAS  Google Scholar 

  • Choulet F, Wicker T, Rustenholz C, Paux E, Salse J, Leroy P, Schlub S, Le Paslier M-C, Magdelenat G, Gonthier C, Couloux A, Budak H, Breen J, Pumphrey M, Liu S, Kong X, Jia J, Gut M, Brunel D, Anderson JA, Gill BS, Appels R, Keller B, Feuillet C (2010) Megabase level sequencing reveals contrasted organization and evolution patterns of the wheat gene and transposable element spaces. Plant Cell 22:1686–1701

    Article  PubMed  CAS  Google Scholar 

  • Cloutier S, McCallum BD, Loutre C, Banks TW, Wicker T, Feulliet C, Keller B, Jordan MC (2007) Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol 65(1–2):93–106

    Article  PubMed  CAS  Google Scholar 

  • Diéguez MJ, Altieri E, Ingala LR, Perera E, Sacco F, Naranjo T (2006) Physical and genetic mapping of AFLPs and the leaf rust resistance Lr3 gene on chromosome 6BL of wheat. Theor Appl Genet 112(2):251–257

    Article  PubMed  Google Scholar 

  • Dyck PL (1979) Identification of the gene for adult plant leaf rust resistance in Thatcher. Can Plant Sci 59:499–501

    Article  Google Scholar 

  • Dyck PL (1991) Genetics of adult-plant leaf rust resistance in “Chinese Spring” and “Sturdy” wheat. Crop Sci 31:309–311

    Article  Google Scholar 

  • Dyck PL, Kerber ER (1970) Inheritance in hexaploid wheat of adult-plant leaf rust resistance derived from Aegilops squarrosa. Can J Genet Cytol 12:175–180

    Google Scholar 

  • Favret EA, Cenoz HP (1963) Análisis genético de una mutante resistente a la roya del tallo, obtenida en trigo. Robigo 14:18–20

    Google Scholar 

  • Favret EA, Saione HA, Franzone PM (1983) New approaches in breeding for disease resistance. Cereal breeding and production symposium, Special Report 718, Oregon State University, Argentina, 7–12 November, pp 397–411

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100(25):15253–15258

    Article  PubMed  CAS  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9:275–296

    Article  Google Scholar 

  • German SE, Kolmer JA (1994) Virulence phenotypes of Puccinia recondita f. sp. tritici in Uruguay. Plant Dis 78:1139–1141

    Article  Google Scholar 

  • Haggag MEA, Dyck PL (1973) The inheritance of leaf rust resistance in four common wheat varieties possessing genes at or near the Lr3 locus. Can J Genet Cytol 15:127–134

    Google Scholar 

  • Harper LC, Cande WZ (2000) Mapping a new frontier: development of integrated cytogenetic maps in plants. Funct Integr Genomics 1:89–98

    Article  PubMed  CAS  Google Scholar 

  • Hiebert CW, Thomas JB, Somer DJ, McCallum BD, Fox SL (2007) Microsatellite mapping of adult-plant leaf rust resistance gene Lr22a in wheat. Theor Appl Genet 115:877–884

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics 164:655–664

    PubMed  CAS  Google Scholar 

  • Johnson R (1981) Durable resistance: definition of, genetic control, and attainment in plant breeding. Phytopathology 71:567–568

    Article  Google Scholar 

  • Kohli MM (1986) Variedades del cono sur de Sudamérica: nombres; progenitores; genealogía y origen. CIMMYT, Mexico City

    Google Scholar 

  • Kolmer JA (1992) Enhanced leaf rust resistance in wheat conditioned by resistance gene pairs with Lr13. Euphytica 61:123–130

    Article  Google Scholar 

  • Kolmer JA (1996) Genetics of resistance to wheat leaf rust. Annu Rev Phytopathol 34:435–455

    Article  PubMed  CAS  Google Scholar 

  • Kolmer JA (1999) Virulence dynamics, phenotypic diversity, and virulence complexity in two populations of Puccinia triticina in Canada from 1987 to 1997. Can J Bot 77:333–338

    Google Scholar 

  • Kolmer JA, Liu JQ (2000) Virulence and molecular polymorphism in international collections of the wheat leaf rust fungus Puccinia triticina. Phytopathology 90:427–436

    Article  PubMed  CAS  Google Scholar 

  • Kolmer JA, Long DL, Hughes ME (2005) Physiologic specialization of Puccinia triticina on wheat in the United States in 2003. Plant Dis 89(11):1201–1206

    Article  Google Scholar 

  • Kolmer JA, Garvin DF, Jin Y (2011) Expression of a Thatcher wheat adult plant stem rust resistance QTL on chromosome arm 2BL is enhanced by Lr34. Crop Sci 51:526–533

    Article  Google Scholar 

  • Kota R, Spielmeyer W, McIntosh RA, Lagudah ES (2006) Fine genetic mapping fails to dissociate durable stem rust resistance gene Sr2 from pseudo-black chaff in common wheat (Triticum aestivum L.). Theor Appl Genet 112(3):492–499

    Article  PubMed  CAS  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 623:1360–1363

    Article  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daley M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Liu ZH, Anderson JA, Hu J, Friesen TL, Rasmussen JB, Faris JD (2005) A wheat intervarietal genetic linkage map based on microsatellite and target region amplified polymorphism markers and its utility for detecting quantitative trait loci. Theor Appl Genet 111(4):782–794

    Article  PubMed  CAS  Google Scholar 

  • Long DL, Kolmer JA (1989) A North American system of nomenclature for Puccinia recondita f.sp. tritici. Phytopathology 79:525–529

    Article  Google Scholar 

  • Macagno LF, Pizarro JB, Cordone GE (1993) Dirección Nacional Asistente de Planificación. Publicación miscelánea N° 4. INTA 15-28

  • Mago R, Tabe L, McIntosh RA, Pretorius Z, Kota R, Paux E, Wicker T, Breen J, Lagudah ES, Ellis JG, Spielmeyer W (2011) A multiple resistance locus on chromosome arm 3BS in wheat confers resistance to stem rust (Sr2), leaf rust (Lr27) and powdery mildew. Theor Appl Genet 123(4):615–623

    Article  PubMed  CAS  Google Scholar 

  • Mains EB, Jackson HS (1926) Physiologic specialization in the leaf rust of wheat; Puccinia triticina Erikss. Phytopathology 16:89–120

    Google Scholar 

  • Martin TJ, Ellingboe AH (1976) Differences between compatible parasite/host genotypes involving the Pm4 locus of wheat and the corresponding genes in Erysiphe graminis f. sp. tritici. Phytopathology 66:1435–1438

    Article  Google Scholar 

  • McIntosh RA, Welllings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Messmer MM, Seyfarth R, Keller M, Schachermayr G, Winzeler M, Zanetti S, Feuillet C, Keller B (2000) Genetic analysis of durable leaf rust resistance in winter wheat. Theor Appl Genet 100:419–431

    Article  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli V (1991) Identification of markers linked to disease-resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Nass HA, Pedersen WL, McKenzie DR, Nelson RR (1981) The residual effects of some “defeated” powdery mildew resistance genes in isolines of winter wheat. Phytopathology 71:1315–1318

    Google Scholar 

  • Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, Lagudah E, Somers D, Kilian A, Alaux M, Vautrin S, Berges H, Eversole K, Appels R, Safar J, Simkova H, Dolezel J, Bernard M, Feuillet C (2008) A physical map of the 1 gigabase bread wheat chromosome 3B. Science 322:101–104

    Article  PubMed  CAS  Google Scholar 

  • Pérez B, Roelfs AP (1989) Resistance to wheat leaf rust of land cultivars and their derivatives. Phytopathology 79:1183 (abstract)

    Google Scholar 

  • Peterson RF, Campbell AB, Hannah AE (1948) A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Can J Res Sect C 26:496–500

    Article  Google Scholar 

  • Pretorius ZA, Roelfs AP (1996) The role of Lr10, Lr13, and Lr34 in the expression of adult-plant resistance to leaf rust in the wheat cultivar Era. Plant Dis 80(2):199–202

    Article  Google Scholar 

  • Riley R (1973) Genetic changes in the host and the significance of disease. Ann Appl Biol 75:128–132

    Article  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier M (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rodriguez Amieva PJ, Tessi JL, Frecha JH, Vallega J (1961) Estimación de los daños producidos en la Argentina por las royas del tallo y de la hoja del trigo durante el período 1949–1958. Robigo 12:18–22

    Google Scholar 

  • Roelfs AP (1988) Genetic control of phenotypes in wheat stem rust. Ann Rev Phytopathol 26:351–367

    Article  Google Scholar 

  • Rowland GG, Kerber ER (1974) Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 16:137–144

    Google Scholar 

  • Sacco F, Tranquilli G, Gorgoschidse L, Suárez EY (1992) Aminopeptidase B1: a centromere marker for chromosome 6B of wheat. Genome 35:261–263

    Article  CAS  Google Scholar 

  • Sacco F, Favret EA, Suarez EY, Solari RM, Saione HA (1995) Spontaneous genetic variation for leaf rust reaction in Sinvalocho MA wheat. J Phytopathol (Berl.) 143:251–255

    Article  Google Scholar 

  • Sacco F, Suárez EY, Naranjo T (1998) Mapping of the leaf rust resistance gene Lr3 on chromosome 6B of Sinvalocho MA wheat. Genome 41:686–690

    CAS  Google Scholar 

  • Safar J, Bartos J, Janda J et al (2004) Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant J 39:960–968

    Article  PubMed  CAS  Google Scholar 

  • Saione HA, Favret EA, Franzone PM, Sacco F (1993) Host genetic analysis by using Puccinia recondita tritici induced mutants for increased virulence. J Phytopathol 138:225–232

    Article  Google Scholar 

  • Samborski DJ, Dyck PL (1982) Enhacement of resistance to Puccinia recondita by interactions of resistance genes in wheat. Can J Plant Pathol 4:152–156

    Article  Google Scholar 

  • Sawhney RN, Nayar SK, Sharma JB, Bedi R (1989) Mechanism of durable resistance: a new approach. Theor Appl Genet 78:229–232

    Article  Google Scholar 

  • Schnurbusch T, Paillard S, Schori A, Messmer M, Schachermayr G, Winzeler M, Keller B (2004) Dissection of quantitative and durable leaf rust resistance in Swiss winter wheat reveals a major resistance QTL in the Lr34 chromosomal region. Theor Appl Genet 108:477–484

    Article  PubMed  CAS  Google Scholar 

  • Singh A, Pallavi JK, Gupta P, Prabhu KV (2011) Identification of microsatellite markers linked to leaf rust adult plant resistance (APR) gene Lr48 in wheat. Plant Breed 130:31–34

    Article  CAS  Google Scholar 

  • Spielmeyer W, Sharp PJ, Lagudah ES (2003) Identification and validation of markers linked to broad-spectrum stem rust resistance gene Sr2 in wheat. (Triticum aestivum L.). Crop Sci 43:333–336

    Article  CAS  Google Scholar 

  • Suárez EY, Favret EA (1984) Reaction to leaf rust of “Sinvalocho” wheat gene in hemizygous condition. Z Pflanzenzuchtg 92:289–294

    Google Scholar 

  • Sui XX, Wang MN, Chen XM (2009) Molecular mapping of a stripe rust resistance gene in spring wheat cultivar Zak. Phytopathology 99:1209–1215

    Article  PubMed  CAS  Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93(1):77–78

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, Van de Lee T, Hornes M, Friters A, Pot J, Paleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4441

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukolanov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Chinese Spring nulli-tetrasomic and ditelosomic lines, tetraploid wheat (Triticum durum) cultivar Buck Platino and diploid wheat (Triticum monoccoccum) DV92 were kindly provided by Dr. G. Tranquilli from Instituto de Recursos Biológicos—INTA (Argentina). L. Ingala thank a doctoral fellowship from the Argentinean Scientific and Technological Research Council (CONICET) and M. López and M.F. Pergolesi from the Argentinean Agency for Science and Technology Promotion (ANPCyT). The authors wish to thank grants PICT 2003-14437, PICT 2005-38150 and PAE 2007-37108-PID 121 from the Argentinean Agency for Science and Technology Promotion (ANPCyT) and grants Nº 522305 and 522312 from the Argentinean Institute of Agricultural Technology (INTA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Sacco.

Additional information

Communicated by M. Sorrells.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ingala, L., López, M., Darino, M. et al. Genetic analysis of leaf rust resistance genes and associated markers in the durable resistant wheat cultivar Sinvalocho MA. Theor Appl Genet 124, 1305–1314 (2012). https://doi.org/10.1007/s00122-012-1788-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-012-1788-8

Keywords

Navigation