Skip to main content
Log in

Analysis of genome-wide linkage disequilibrium in the highly polyploid sugarcane

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Linkage disequilibrium (LD) in crops, established by domestication and early breeding, can be a valuable basis for mapping the genome. We undertook an assessment of LD in sugarcane (Saccharum spp), characterized by one of the most complex crop genomes, with its high ploidy level (≥8) and chromosome number (>100) as well as its interspecific origin. Using AFLP markers, we surveyed 1,537 polymorphisms among 72 modern sugarcane cultivars. We exploited information from available genetic maps to determine a relevant statistical threshold that discriminates marker associations due to linkage from other associations. LD is very common among closely linked markers and steadily decreases within a 0–30 cM window. Many instances of linked markers cannot be recognized due to the confounding effect of polyploidy. However, LD within a sample of cultivars appears as efficient as linkage analysis within a controlled progeny in terms of assigning markers to cosegregation groups. Saturating the genome coverage remains a challenge, but applying LD-based mapping within breeding programs will considerably speed up the localization of genes controlling important traits by making use of phenotypic information produced in the course of selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aitken KS, Jackson PA, McIntyre CL (2005) A combination of AFLP and SSR markers provides extensive map coverage and identification of homo(eo)logous linkage groups in a sugarcane cultivar. Theor Appl Genet 110:789–801

    Article  PubMed  CAS  Google Scholar 

  • Arceneaux G (1965) Cultivated sugarcanes of the world and their botanical derivation. Proc Int Soc Sugar Cane Technol 12:844–854

    Google Scholar 

  • Asnaghi C, Roques D, Ruffel S, Kaye C, Hoarau JY, Télismart H, Girard JC, Raboin LM, Risterucci AM, Grivet L, D’Hont A (2004) Targeted mapping of a sugarcane rust resistance gene (Bru1) using bulked segregant analysis and AFLP markers. Theor Appl Genet 108:759–764

    Article  PubMed  CAS  Google Scholar 

  • Breseghello F, Sorrells ME (2006) Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics 172:1165–1177

    Article  PubMed  Google Scholar 

  • Cardon LR, Bell JI (2001) Association study designs for complex diseases. Nat Rev Genet 2:91–99

    Article  PubMed  CAS  Google Scholar 

  • Cuadrado A, Acevedo R, de Moreno Dias la Espina S, Jouve N, de la Torre C (2004) Genome remodelling in three modern S. officinarum × S. spontaneum sugarcane cultivars. J Exp Bot 55:847–854

    Article  PubMed  CAS  Google Scholar 

  • Daugrois JH, Grivet L, Roques D, Hoarau JY, Lombard H, Glaszmann JC, D’Hont A (1996) A putative major gene for rust resistance linked with an RFLP marker in sugarcane cultivar R570. Theor Appl Genet 92:1059–1064

    Article  CAS  Google Scholar 

  • D’Hont A (2005) Unravelling the genome structure of polyploids using FISH and GISH; examples of sugarcane and banana. Cytogenet Genome Res 109:27–33

    Article  PubMed  CAS  Google Scholar 

  • D’Hont A, Grivet L, Feldmann P, Rao RS, Berding N, Glaszmann JC (1996) Characterisation of the double genome structure of modern sugarcane cultivars (Saccharum spp.) by molecular cytogenetics. Mol Gen Genet 250:405–413

    PubMed  CAS  Google Scholar 

  • Dufour P, Deu M, Grivet L, D’Hont A, Paulet F, Bouet A, Lanaud C, Glaszmann JC, Hamon P (1997) Construction of a composite sorghum genome map and comparison with sugarcane, a related complex polyploid. Theor Appl Genet 94:409–418

    Article  CAS  Google Scholar 

  • Farnir F, Coppieters W, Arranz JJ, Berzi P, Cambisano N, Grisart B, Karim L, Marcq F, Moreau L, Mni M, Nezer C, Simon P, Vanmanshoven P, Wagenaar D, Georges M (2000) Extensive genome-wide linkage disequilibrium in cattle. Genome Res 10:220–227

    Article  PubMed  CAS  Google Scholar 

  • Flint-Garcia SA, Thornsberry JM, Buckler IV ES (2003) Structure of linkage disequilibrium in plants. Annu Rev Plant Biol 54:357–374

    Article  PubMed  CAS  Google Scholar 

  • Gallais A (2003) Quantitative genetics and breeding methods in autopolyploid plants. INRA Editions, Paris, 515 pp

    Google Scholar 

  • Garcia AAF, Kido EA, Meza AN, Souza HMB, Pinto LR, Pastina MM, Leite CS, da Silva JAG, Ulian EC, Figueira A, Souza AP (2006) Development of an integrated genetic map of a sugarcane (Saccharum spp.) commercial cross, based on a maximum-likelihood approach for estimation of linkage and linkage phases. Theor Appl Genet 112:298–314

    Article  PubMed  CAS  Google Scholar 

  • Garris AJ, McCouch SR, Kresovich S (2003) Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics 165:759–769

    PubMed  Google Scholar 

  • Grivet L, Arruda P (2001) Sugarcane genomics: depicting the complex genome of an important tropical crop. Curr Opin Plant Biol 5:122–127

    Article  Google Scholar 

  • Grivet L, D’Hont A, Roques D, Feldmann P, Lanaud C, Glaszmann JC (1996) RFLP mapping in cultivated sugarcane (Saccharum spp.): genome organization in a highly polyploid and aneuploid interspecific hybrid. Genetics 142:987–1000

    PubMed  CAS  Google Scholar 

  • Grivet L, Glaszmann JC, Vincentz M, da Silva F, Arruda P (2003) ESTs as a source for sequence polymorphism discovery in sugarcane: example of the Adh genes. Theor Appl Genet 106:190–197

    PubMed  CAS  Google Scholar 

  • Guimaraes CT, Sills GR, Sobral BWS (1997) Comparative mapping of Andropogoneae: Saccharum L. (sugarcane) and its relation to sorghum and maize. Proc Natl Acad Sci 94:14261–14266

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Rustgi S, Kulwal PL (2005) Linkage disequilibrium and association studies in higher plants: present status and future prospects. Plant Mol Biol 57:461–485

    Article  PubMed  CAS  Google Scholar 

  • Hamblin MT, Fernandez MGS, Casa AM, Mitchell SE, Paterson AH, Kresovich S (2005) Equilibrium processes cannot explain high levels of short- and medium-range linkage disequilibrium in the domesticated grass Sorghum bicolor. Genetics 171:12474–1256

    Article  Google Scholar 

  • Hansen M, Kraft T, Ganestam S, Säll T, Nilsson NO (2001) Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genet Res Camb 77:61–66

    CAS  Google Scholar 

  • Hoarau JY, Offmann B, D’Hont A, Risterucci AM, Roques D, Glaszmann JC, Grivet L (2001) Genetic dissection of a modern cultivar (Saccharum spp.) I. genome mapping with AFLP markers. Theor Appl Genet 103:84–97

    Article  CAS  Google Scholar 

  • Jannoo N, Grivet L, Dookun A, D’Hont A, Glaszmann JC (1999) Linkage desequilibrium among modern sugarcane cultivars. Theor Appl Genet 99:1053–1060

    Article  CAS  Google Scholar 

  • Jannoo N, Grivet L, David J, D’Hont A, Glaszmann JC (2004). Differential chromosome pairing affinities at meiosis in polyploid sugarcane revealed by molecular markers. Heredity 93:460–467

    Article  PubMed  CAS  Google Scholar 

  • Kraakman ATW, Niks RE, van den Berg PMMM, Stam P, van Eeuwijk FA (2004) Linkage disequilibrium mapping of yield and yield stability in modern spring barley cultivars. Genetics 168:435–446

    Article  PubMed  CAS  Google Scholar 

  • Mehta CR, Patel NR (1983) A network algorithm for performing Fisher’s exact test in r × c contingency tables. J Am Stat Assoc 78:427–434

    Article  Google Scholar 

  • Ming R, Liu SC, Lin YR, Da Silva J, Wilson W, Braga D, van Deinze A, Wenslaff TF, Wu KK, Moore PH, Burnquist W, Sorrells ME, Irvine JE, Paterson AH (1998) Detailed alignment of Saccharum and Sorghum chromosomes: comparative organization of closely related diploid and polyploid genomes. Genetics 150:1663–1682

    PubMed  CAS  Google Scholar 

  • Ming R, Liu SC, Moore PH, Irvine JE, Paterson AH (2001) QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane cultivars under salinity. Plant Physiol 104:521–526

    Google Scholar 

  • Ming R, DelMonte T, Moore PH, Irvine JE, Paterson AH (2002a) Comparative analysis of QTLs affecting plant height and flowering time among closely-related diploid and polyploid genomes. Genome 45:794–803

    Article  PubMed  CAS  Google Scholar 

  • Ming R, Wang YW, Dryer X, Moore PH, Irvine JE, Paterson AH (2002b) Molecular dissection of complex traits in autopolyploid: mapping QTLs influencing sugar yield and related traits in sugarcane. Theor Appl Genet 105:332–345

    Article  PubMed  CAS  Google Scholar 

  • Morgante M, Salamini F (2003) From plant genomics to breeding practice. Curr Opin Biotech 14:214–219

    Article  PubMed  CAS  Google Scholar 

  • Nei M, Li W (1979) Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci USA 76:427–434

    Article  Google Scholar 

  • Nordborg M, Tavaré S (2002) Linkage disequilibrium: what history has to tell us. Trends Genet 18:83–90

    Article  PubMed  CAS  Google Scholar 

  • Nordborg M, Borevitz JO, Bergelson J, Berry CC, Chory J, Hagenblad J, Kreitman M, Maloof JN, Noyes T, Oefner PJ, Stahl EA, Weigel D (2002) The extent of linkage disequilibrium in Arabidopsis thaliana. Nat Genet 30:190–193

    Article  PubMed  CAS  Google Scholar 

  • Nordborg M, Hu TT, Ishino Y, Jhaveri J, Toomajian C, Zheng H, Bakker E, Calabrese P, Gladstone J, Goyal R, Jakobsson M, Kim S, Morozov Y, Padhukasahasram B, Plagnol V, Rosenberg NA, Shah C, Wall JD, Wang J, Zhao K, Kalbfleisch T, Schulz V, Kreitman M, Bergelson J. (2005) The Pattern of polymorphism in Arabidopsis thaliana. PLoS Biol 3(7): e196. doi:10.1371/journal.pbio.0030196

  • Perrier X, Flori A, Bonnot F (2003) Methods of data analysis. In: Hamon PS, Seguin M, Perrier X, Glaszmann JC (eds) Genetic diversity of cultivated tropical plants, Cirad, Montpellier, pp 31–63

    Google Scholar 

  • Pinto LR, Oliveira KM, Ulia EC, Garcia AAF, de Souza AP (2004) Survey in the sugarcane expressed sequence tag database (SUCEST) for simple sequence repeats. Genome 47:795–804

    Article  PubMed  CAS  Google Scholar 

  • Piperidis G, D’Hont A (2001) Chromosome composition analysis of various Saccharum interspecific hybrids by genomic in situ hybridisation (GISH). Int Soc Sugar Cane Technol Congr 11:565

    Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure from multilocus genotype data. Genetics 155:945–959

    PubMed  CAS  Google Scholar 

  • Pritchard JK, Wen W (2003) Documentation for structure software: Version 2. http://pritch.bsd.uchicago.edu

  • Raboin LM, Oliveira KM, Lecunff L, Telismart H, Roques D, Butterfield M, Hoarau JY, D’Hont A (2006) Genetic mapping in the high polyploid sugarcane using a bi-parental progeny; identification of a gene controlling stalk colour and a new rust resistance gene. Theor Appl Genet 112:1382–1391

    Article  PubMed  CAS  Google Scholar 

  • Rahmani M, Hodges AW, Kiker CF, Shiralipour A (2000) Biomass research and development in Florida: results of 20 years experience. Proceedings of the bioenergy. The nineth biennial bioenergy conference, Buffalo, 15–19 October

  • Rafalski A, Morgante M (2004) Corn and humans: recombination and linkage disequilibrium in two genomes of similar size. Trends Genet 20:103–111

    Article  PubMed  CAS  Google Scholar 

  • Reffay N, Jackson PA, Aitken KS, Hoarau JY, D’Hont A, Besse P, McIntyre CL (2005) Characterisation of genome regions incorporated from an important wild relative into Australian sugarcane. Mol Breed 15:367–381

    Article  CAS  Google Scholar 

  • Rossi M, Araujo PG, Paulet F, Garsmeur O, Dias VM, Chen H, van Sluys MA, D’Hont A (2003) Genomic distribution and characterization of EST-derived resistance gene analogs (RGAs) in sugarcane. Mol Gen Genet 269:406–419

    CAS  Google Scholar 

  • Ruiz M, Rouard M, Raboin LM, Lartaud M, Lagoda P, Courtois B (2004) Tropgene-DB, a multitropical crop information system. Nucleic Acids Res 32: D364–D367

    Article  PubMed  CAS  Google Scholar 

  • SAS Institute (1990) SAS procedures guide, version 6. 3rd edn. SAS Institute Inc, Cary

    Google Scholar 

  • Stich B, Melchinger AE, Frish M, Maurer HP, Heckenberger M, Reif JC (2005) Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor Appl Genet 111:723–730

    Article  PubMed  Google Scholar 

  • Tenaillon MI, Sawkins MC, Long AD, Gaut RL, Doebley JF, Gaut BS (2001) Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proc Natl Acad Sci 98:9161–9166

    Article  PubMed  CAS  Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    Article  PubMed  CAS  Google Scholar 

  • Wei X, Jackson PA, Mc Intyre CL, Aitken KS, Croft B (2006) Associations between DNA markers and resistance to diseases in sugarcane and effects of population substructure. Theor Appl Genet 114:155–164

    Article  PubMed  CAS  Google Scholar 

  • Wenzl P, Carling J, Kudrna D, Jaccoud D, Huttner E, Kleinhofs A, Kilian A (2004) Diversity arrays technology (DArT) for whole-genome profiling of barley. Proc Natl Acad Sci 101:9915–9920

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully thank J.Y. Hoarau for his helpful revision of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angélique D’Hont.

Additional information

Communicated by J. E. Bradshaw.

Louis-Marie Raboin and Jérôme Pauquet contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raboin, LM., Pauquet, J., Butterfield, M. et al. Analysis of genome-wide linkage disequilibrium in the highly polyploid sugarcane. Theor Appl Genet 116, 701–714 (2008). https://doi.org/10.1007/s00122-007-0703-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0703-1

Keywords

Navigation