Skip to main content
Log in

Identification of AFLP and STS markers closely linked to the def locus in pea

  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The recessive mutation of the def gene of pea (Pisum sativum L.) leads to the loss of the hilum, the abscission zone between the seed and the pod. Thereby, it reduces the free dispersal of the seeds through pod shattering. As a prerequisite for a gene isolation via a map-based cloning approach, bulked segregant analysis followed by single plant analyses of over 200 homozygous individuals of a population of 476 F2 plants derived from a cross between 'DGV' (def wild-type) and 'PF' (def mutant), were used to detect markers closely linked to the def locus. The AFLP technique in combination with silver staining was used to maximize numbers of reproducible marker loci. Fifteen AFLP loci showed a genetic distance less than 5 and two of them less than 1 centiMorgans (cM) to the gene of interest. AFLPs were converted into sequence tagged sites (STSs) and into a newly refined AFLP-based single locus marker named the 'sequence specified AFLP' (ssAFLP).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2A, B.
Fig. 3.
Fig. 4.
Fig. 5A, B.

Similar content being viewed by others

References

  • Bassam BJ, Caetano-Anollés G, Gresshoff PM (1991) Fast and sensitive silver staining of DNA in polyacrylamide gels. Ann Biochem 196:80–83

    CAS  Google Scholar 

  • Bradeen JM, Simon PW (1998) Conversion of AFLP fragments linked to the carrot Y2 locus to a simple codominant PCR-based marker form. Theor Appl Genet 97:960–967

    Article  CAS  Google Scholar 

  • Chalhoub BA, Thibault S, Laucou V, Rameau C, Höfte H, Cousin R (1997) Silver staining and recovery of AFLP amplification products on large denaturing polyacrylamide gels. Biotechniques 22:216–220

    CAS  PubMed  Google Scholar 

  • Child RD, Chauvaux N, John K, Ulvskov P, Onckelen HA (1998) Ethylene biosynthesis in oilseed rape pods in relation to pod shatter. J Exp Bot 49:829–838

    Article  CAS  Google Scholar 

  • Coyne CJ, Pilet ML, Deniot G, Baranger A, Prioul S, McClendon MT (2000) Selected AFLP primer pairs for fine mapping in pea. Pisum Genet 32:27–30

    Google Scholar 

  • Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:13–15

    Google Scholar 

  • Ellis THN (1993) The nuclear genome. In: Casey R, Casey DR (eds) Peas: genetics, molecular biology and biotechnology. CAB International, pp 13–47

    Google Scholar 

  • ENGAGE Agro Corporation (2002) SPODNAM, for pod shatter control and improved seed quality. www.engageagro.com/media/pdf/label/spodnam_label_english.PDF

  • Esch E, Weber WE (2002) Investigation of crossover interference in barley (Hordeum vulgare L.) using the coefficient of coincidence. Theor Appl Genet 104:786–796

    Article  Google Scholar 

  • Garcia-Diaz CA (2000) Birdsfoot trefoil seed production. III. Seed shatter and optimal harvest time. Crop Sci 40:457–462

    Google Scholar 

  • Gill KS, Gill S, Endo TR, Taylor T (1996) Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144:1883–1891

    CAS  PubMed  Google Scholar 

  • Gualtieri G, Kulikova O, Limpens E, Dong-Jin K, Cook DR, Bisseling T, Geurts R (2002) Microsynteny between pea and Medicago truncatula in the SYM2 region. Plant Mol Biol 50:225–235

    CAS  Google Scholar 

  • Jackson G, Miller J (1999) Dryland spring pea variety performance trial. Western Triangle Agricultural Research Center, Research Reports and Publications, Annual Reports, www.ag.montana.edu/wtarc/Web99/Soil/pea/DLPvar99.htm

  • Khangildin FK, Khangildin VV (1969) Woprosy genetiki i sjelekcji sjelskohozjajstwienych rastieniej, Ufa

  • Knapp SJ, Holloway JL, Bridges WC, Liu BH (1995) Mapping dominant markers using F2 matings. Theor Appl Genet 91:74–81

    Google Scholar 

  • Kosambi DD (1944) The estimation of map distance from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Künzel G, Korzun L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412

    PubMed  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daley M, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Liljegren SJ, Ditta GS, Eshed Y, Savidge B, Bowman JL, Yanofsky MF (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770

    Article  CAS  PubMed  Google Scholar 

  • MacLeod J (1981) Harvesting. Oilseed Rape Book, Cambridge, Cambridge Agricultural Publications, pp 107–119

  • Mano Y, Kawasaki S, Takaiwa F, Komatsuda T (2001) Construction of a genetic map of barley (Hordeum vulgare L.) cross 'Azumamugi' ×'Kanto Nakate Gold' using a simple and efficient amplified fragment-length polymorphism system. Genome 44:284–292

    Article  CAS  PubMed  Google Scholar 

  • Mao L, Begum D, Chuang H, Budiman MA, Szymkowiak EJ, Irish EE, Wing RA (2000) JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 406:910–913

    Article  CAS  PubMed  Google Scholar 

  • Meksem K, Ruben E, Hyten D, Triwitayakorn K, Lightfoot DA (2001) Conversion of AFLP bands into high-throughput DNA markers. Mol Gen Genet 265:207–214

    CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli RV (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    PubMed  Google Scholar 

  • Moden WJ, Dowding EA, Whitcraft JC, O'Keeffe LJ (1986) Lentil harvesting in the Palouse. American Society of Agricultural Engineers, Paper No. 86–1580

  • Muehlbauer FJ, Summerfield RJ, Kaiser WJ, et al. (1997) Principles and practice of lentil production. U.S. Department of Agriculture, Agricultural Research Service, ARS – 141

  • Patterson SE (2001) Cutting loose. Abscission and dehiscence in Arabidopsis. Plant Physiol 126:494–500

    Google Scholar 

  • Pedersen C, Giese H, Linde-Laursen I (1995) Towards an integration of the physical and the genetic chromosome map of barley by in situ hybridization. Hereditas 123:77–88

    CAS  Google Scholar 

  • Petes TD (2001) Meiotic recombination hot spots and cold spots. Nature Rev 2:360–369

    Article  CAS  Google Scholar 

  • Philbrook BD, Oplinger ES (1986) Soybean field losses as influenced by harvest delays. Agron J 81:251–258

    Google Scholar 

  • Prins R, Groenewald JZ, Marais GF, Snape JW, Koebner RMD (2001) AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor Appl Genet 103:618–624

    CAS  Google Scholar 

  • Reamon-Büttner SM, Schondelmaier J, Jung C (1998) AFLP markers tightly linked to the sex locus in Asparagus officinalis L. Mol Breed 4:91–98

    Article  Google Scholar 

  • Roberts JA, Whitelaw CA, Gonzalez-Carranza ZA, McManus MT (2000) Cell separation processes in plants-models, mechanisms and manipulation. Ann Bot 86:223–235

    Article  Google Scholar 

  • Rozental AJ (1966) Bobowyje i ziernobobowyje kultury. Moskwa

  • Säll T, Nilsson NO (1994) The robustness of recombination frequency estimates in intercrosses with dominant markers. Genetics 137:589–596

    PubMed  Google Scholar 

  • Sanders PM, Lee PY, Biesgen C, Boone JD, Beals TP, Weiler EW, Goldberg RB (2000) The Arabidopsis DELAYED DEHISCENCE 1 gene encodes an enzyme in the jasmonic acid synthesis pathway. Plant Cell 12:1041–1061

    CAS  PubMed  Google Scholar 

  • Schnable PS, Hsia AP, Nikolau BJ (1998) Genetic recombination in plants. Curr Opin Plant Biol 1:123–129

    CAS  PubMed  Google Scholar 

  • Shan X, Blake TK, Talbert LE (1999) Conversion of AFLP markers to sequence-specific PCR markers in barley and wheat. Theor Appl Genet 98:1072–1078

    Article  CAS  Google Scholar 

  • Swiecicki WK, Wolko B (1990) Locus for the gene def (DEVELOPMENT FUNICULUS). Pisum Newslett 22:67–68

    Google Scholar 

  • Tiwari KR, Penner GA, Warkentin TD (1999) Identification of AFLP markers for the powdery mildew resistance gene er2 in pea. Pisum Genet 31:27–29

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Freijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Weeden NF, Ellis THN, Timmerman-Vaughan GM, Swiecicki WK, Rozov SM, Berdnikov VA (1998) A consensus linkage map for Pisum sativum. Pisum Genet 30:1–4

    Google Scholar 

  • Wen L, Tang HV, Chen W, Chang R, Pring DR, Klein PE, Childs KL, Klein RR (2002) Development and mapping of AFLP markers linked to the sorghum fertility restorer gene rf4. Theor Appl Genet 104:577–585

    Article  Google Scholar 

  • Zhang Y, Stommel JR (2000) RAPD and AFLP tagging and mapping of Beta (B) and Beta modifier (MoB), two genes which influence β-carotene accumulation in fruit of tomato (Lycopersicum esculentum Mill.). Theor Appl Genet 100:368–375

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank the plant breeding company Pajbjergfonden for kindly supplying the pea breeding line 'Pajbjergfonden 42403'.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. von Stackelberg.

Additional information

Communicated by C. Möllers

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Stackelberg, M., Lindemann, S., Menke, M. et al. Identification of AFLP and STS markers closely linked to the def locus in pea. Theor Appl Genet 106, 1293–1299 (2003). https://doi.org/10.1007/s00122-003-1197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-003-1197-0

Keywords

Navigation