Skip to main content
Log in

Identification of SCAR markers linked to the Foc gene governing resistance to Fusarium oxysporum f. sp. cucumerinum in cucumber cv. SMR-18

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Fusarium wilt, caused by Fusarium oxysporum f. sp. cucumerinum (FOC) is an important soil-borne disease of cucumber in several parts of the world. In this study, we employed amplified fragment length polymorphic (AFLP) markers along with bulked segregant analysis (BSA), in order to identify structural markers linked to the Foc gene that governs resistance to FOC races 1, 2 and 3 in the resistant cv. SMR-18. From the four AFLP markers originally identified at the BSA level, only one (E12M50134 + T) maintained a linkage in coupling phase against the F2 mapping population. AFLP-mediated sequencing was employed in order to ensure the identification and sequencing of the truly linked AFLP fragment. This AFLP marker mapped at a distance of 6.0 cM from the Foc resistance locus and was successfully converted into two sequence-characterized amplified region (SCAR) co-dominant markers. SCAR marker SCE12M50B produced a single fragment linked to Foc and behaved as a dominant marker, while SCE12M50A amplified one strong fragment linked to Foc in parallel with a second faint fragment. The SCE12M50B fragment physically maps on chromosome 2 and lies 1.64 Mb (7,0 cM) away from the microsatellite marker SSR03084, which is closely linked to Ccu locus that controls resistance to scab, caused by Cladosporium cucumerinum in cv. SMR-18.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adhikari, T. B., Anderson, J. M., & Goodwin, S. B. (2003). Identification and molecular mapping of a gene in wheat conferring resistance to Mycosphaerella graminicola. Phytopathology, 93, 1158–1164.

    CAS  PubMed  Google Scholar 

  • Ardiel, G. S., Grewal, T. S., Deberdt, P., Rossnagel, B. G., & Scoles, G. J. (2002). Inheritance of resistance to covered smut in barley and development of a tightly linked SCAR marker. Theoretical and Applied Genetics, 104, 457–464.

    CAS  PubMed  Google Scholar 

  • Armstrong, G. M., & Armstrong, J. K. (1978). Formae speciales and races of Fusarium oxysporum causing wilts of the Cucurbitaceae. Phytopathology, 68, 19–28.

    Google Scholar 

  • Avila, C. M., Sillero, J. C., Rubiales, D., Moreno, M. T., & Torres, A. M. (2003). Identification of RAPD markers linked to the Uvf-1 gene conferring hypersensitive resistance against rust (Uromyces viciae-fabae) in Vicia faba L. Theoretical and Applied Genetics, 107, 353–358.

    CAS  PubMed  Google Scholar 

  • Blas, A. L., Yu, Q., Chen, C., Veatch, O., Moore, P. H., Paull, R. E., & Ming, R. (2009). Enrichment of a papaya high-density genetic map with AFLP markers. Genome, 52, 716–725.

    CAS  PubMed  Google Scholar 

  • Bradeen, J. M., Staub, J. E., Wye, C., Antonise, R., & Peleman, J. (2001). Towards an expanded and integrated linkage map of cucumber (Cucumis sativus L.). Genome, 44, 111–119.

    CAS  PubMed  Google Scholar 

  • Brugmans, B., van der Hulst, R. G., Visser, R. G., Lindhout, P., & van Eck, H. J. (2003). A new and versatile method for the successful conversion of AFLP markers into simple single locus markers. Nucleic Acids Research, 31(10), e55.

    PubMed  PubMed Central  Google Scholar 

  • Devran, Z., Firat, A. F., Tör, M., Mutlu, N., & Elekçioglu, I. H. (2011). AFLP and SRAP markers linked to the mj gene for root-knot nematode resistance in cucumber. Scientia Agricola, 68, 115–119.

    CAS  Google Scholar 

  • Doulis, A. G., Harfouche, A. L., & Aravanopoulos, F. A. (2000). Rapid, high quality DNA isolation from cypress (Cupressus sempervirens L.) needles and optimization of the RAPD marker technique. Plant Molecular Biology Reporter, 17, 1–14.

    Google Scholar 

  • Ford, R., Pang, E. C. K., & Taylor, P. W. J. (1999). Genetics of resistance to ascochyta blight (Ascochyta lentis) of lentil and the identification of closely linked RAPD markers. Theoretical and Applied Genetics, 98, 93–98.

    CAS  Google Scholar 

  • Haanstra, J. P. W., Wye, C., Verbakel, H., Meijer-Dekens, F., Van den Berg, P., Odinot, P., et al. (1999). An integrated high density RFLP-AFLP map of tomato based on two Lycopersicon esculentum x L. pennellii F2 populations. Theoretical and Applied Genetics, 99, 254–271.

    CAS  Google Scholar 

  • Huang, S., Li, R., Zhang, Z., Li, L., Gu, X., Fan, W., et al. (2009). The genome of the cucumber, Cucumis sativus L. Nature Genetics, 41, 1275–1281.

    CAS  PubMed  Google Scholar 

  • Kang, H., Weng, Y., Yang, Y., Zhang, Z., Zhang, S., Mao, Z., Cheng, G., Gu, X., Huang, S., & Xie, B. (2011). Fine genetic mapping localizes cucumber scab resistance gene Ccu into an R gene cluster. Theoretical and Applied Genetics, 122, 795–803.

    CAS  PubMed  Google Scholar 

  • Kosambi, D. D. (1944). The estimation of map distances from recombination values. Annals of Eugenics, 12, 172–177.

    Google Scholar 

  • Larsen, R. C., Hollingsworth, C. R., Vandemark, G. J., Gritsenko, M. A., & Gray, F. A. (2002). A rapid method using PCR-Based SCAR markers for the detection and identification of Phoma sclerotioides: the cause of brown root rot disease of alfalfa. Plant Disease, 86, 928–932.

    CAS  PubMed  Google Scholar 

  • Li, Z., Pan, J., Guan, Y., Tao, Q., He, H., Si, L., & Cai, R. (2008). Development and fine mapping of three co-dominant SCAR markers linked to the M/m gene in the cucumber plant (Cucumis sativus L.). Theoretical and Applied Genetics, 117, 1253–1260.

    CAS  PubMed  Google Scholar 

  • Liebenberg, M. M., Mienie, C. M. S., & Pretorius, Z. A. (2006). The occurrence of rust resistance gene Ur-13 in common bean cultivars and lines. Euphytica, 150, 365–386.

    CAS  Google Scholar 

  • Lievens, B., Claes, L., Vakalounakis, D. J., Vanachter, A. C., & Thomma, B. P. (2007). A robust identification and detection assay to discriminate the cucumber pathogens Fusarium oxysporum f. sp. cucumerinum and f. sp. radicis-cucumerinum. Environmental Microbiology, 9, 2145–2161.

    CAS  PubMed  Google Scholar 

  • Liu, D. L., Yang, R. H., & Ha, Y. H. (2003). Research on genetic characteristics of cucumbers resisting to Fusarium wilt. Tianjin Agricultural Sciences, 9, 33–35.

    Google Scholar 

  • Lv, J., Qi, J., Shi, Q., Shen, D., Zhang, S., Shao, G., et al. (2012). Genetic diversity and population structure of cucumber (Cucumis sativus L.). PLoS One, 7(10), e46919.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meksem, K., Leister, D., Peleman, J., Zabeau, M., Salamini, F., & Gebhardt, C. (1996). A high resolution map of the vicinity of the R1 locus on chromosome V of potato based on RFLP and AFLP markers. Molecular and General Genetics, 249, 74–81.

    Google Scholar 

  • Moghaddam, H. H., Leus, L., De Riek, J., Van Huylenbroeck, J., & Van Bockstaele, E. (2012). Construction of a genetic linkage map with SSR, AFLP and morphological markers to locate QTLs controlling pathotype-specific powdery mildew resistance in diploid roses. Euphytica, 184, 413–427.

    Google Scholar 

  • Mutlu, N., Demirelli, A., Ilbi, H., & Ikten, C. (2015). Development of co-dominant SCAR markers linked to resistant gene against the Fusarium oxysporum f. sp. radicis-lycopersici. Theoretical and Applied Genetics, 128, 1791–1798.

    CAS  PubMed  Google Scholar 

  • Naegele, R. P., & Wehner, T. C. (2017). Genetic Resources of Cucumber. In R. Grumet, N. Katzir & J. Garcia-Mas (Eds.), Genetics and Genomics of Cucurbitaceae. Plant Genetics and Genomics: Crops and Models (pp. 61–86). Cham: Springer.

    Google Scholar 

  • Najimi, B., Boukhatem, N., El Jaafari, S., Jlibene, M., Paul, R., & Jacquemin, J. M. (2002). Amplified fragment length polymorphism (AFLP) analysis of markers associated with H5 and H22 Hessian fly resistance genes in bread wheat. Biotechnology, Agronomy, Society and Environment, 6, 79–85.

    CAS  Google Scholar 

  • Negi, M. S., Devic, M., Delseny, M., & Lakshmikumaran, M. (2000). Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid selection. Theoretical and Applied Genetics, 101, 146–152.

    CAS  Google Scholar 

  • Ohara, T., Song, Y. S., Tsukazaki, H., Wako, T., Nunome, T., & Kojima, T. (2005). Genetic mapping of AFLP markers in Japanese bunching onion (Allium fistulosum). Euphytica, 144, 255–263.

    CAS  Google Scholar 

  • Ouédraogo, J. T., Tignegre, J. B., Timko, M. P., & Belzile, F. J. (2002). AFLP markers linked to resistance against Striga gesnerioides race 1 in cowpea (Vigna unguiculata). Genome,45, 787–793.

  • Paran, I., & Michelmore, R. (1993). Development of reliable PCR-based markers linked downy mildew resistance genes in lettuce. Theoretical and Applied Genetics, 85, 985–993.

    CAS  PubMed  Google Scholar 

  • Park, Y., Hwana, J., Kim, K., Kang, J., Kim, B., Xu, S., & Ahn, Y. K. (2013). Development of the gene-based SCARs for the Ph-3 locus, which confers late blight resistance in tomato. Scientia Horticulturae, 164, 9–16.

    CAS  Google Scholar 

  • Qi, J., Liu, X., Shen, D., Miao, H., Xie, B., Li, X., et al. (2013). A genomic variation map provides insights into the genetic basis of cucumber domestication and diversity. Nature Genetics, 45, 1510–1515.

    CAS  PubMed  Google Scholar 

  • Qi, X., Stam, P., & Lindhout, P. (1998). Use of locus-specific AFLP markers to construct a high-density molecular map in barley. Theoretical and Applied Genetics, 96, 376–384.

    CAS  PubMed  Google Scholar 

  • Ren, Y., Zhang, Z., Liu, J., Staub, J. E., Han, Y., Cheng, Z., et al. (2009). An integrated genetic and cytogenetic map of the cucumber genome. PLoS One, 4(6), e5795.

    PubMed  PubMed Central  Google Scholar 

  • Rubinstein, M., Katzenellenbogen, M., Eshed, R., Rozenm, A., Katzir, N., Colle, M., et al. (2015). Ultrahigh-density linkage map for cultivated cucumber (Cucumis sativus L.) using a single-nucleotide polymorphism genotyping array. PLoS One, 10(4), e0124101.

    PubMed  PubMed Central  Google Scholar 

  • Scott, K. D., Ablett, E. M., Lee, L. S., & Henry, R. J. (2000). AFLP markers distinguishing an early mutant of Flame Seedless grape. Euphytica, 113, 245–249.

    CAS  Google Scholar 

  • Shirasawa, K., Kishitani, S., & Nishio, T. (2004). Conversion of AFLP markers to sequence-specific markers for closely related lines in rice by use of the rice genome sequence. Molecular Breeding, 14, 283–292.

    Google Scholar 

  • Stam, P., & Van Ooijen, J. W. (1995). JoinMapversion 2.0: Software for the calculation of genetic linkage maps. Wageningen: CPRO-DLO.

    Google Scholar 

  • Staub, J. E., Robbins, M. D., Chung, S. M., & Sun, Z. (2006). History and application of molecular markers for cucumber improvement. Curcubitaceae, 197–205.

  • Tezuka, T., Waki, K., Yashiro, K., Kuzuya, M., Ishikawa, T., Takatsu, Y., & Miyagi, M. (2009). Construction of a linkage map and identification of DNA markers linked to Fom-1, a gene conferring resistance to Fusarium oxysporum f. sp. melonis race 2 in melon. Euphytica, 168, 177–188.

    CAS  Google Scholar 

  • Thomas, C. M., Vos, P., Zabeau, M., Jones, D. A., Norcott, K. A., Chadwick, B. P., & Jones, J. D. (1995). Identification of amplified restriction fragment polymorphism (AFLP) markers tightly linked to the tomato Cf-9 gene for resistance to Cladosporium fulvum. Plant Journal, 8, 785–794.

    CAS  PubMed  Google Scholar 

  • Tok, F. M., & Kurt, S. (2010). Pathogenicity, vegetative compatibility and amplified fragment length polymorphism (AFLP) analysis of Fusarium oxysporum f. sp. radicis-cucumerinum isolates from Turkish greenhouses. Phytoparasitica, 38, 253–260.

  • Tullu, A., Buchwaldt, L., Warkentin, T., Taran, B., & Vandenberg, A. (2003). Genetics of resistance to anthracnose and identification of AFLP and RAPD markers linked to the resistance gene in PI 320937 germplasm of lentil (Lens culinaris Medikus). Theoretical and Applied Genetics, 106, 428–434.

    CAS  PubMed  Google Scholar 

  • Vakalounakis, D. J. (1993). Inheritance and genetic linkage of fusarium wilt (Fusarium oxysporum f. sp. cucumerinum race 1) and scab (Cladosporium cucumerinum) resistance genes in cucumber (Cucumis sativus). Annals of Applied Biology, 123, 359–365.

    Google Scholar 

  • Vakalounakis, D. J. (1995). Inheritance and linkage of resistance in cucumber line SMR-18 to races 1 and 2 of Fusarium oxysporum f. sp. cucumerinum. Plant Pathology, 44, 169–172.

    Google Scholar 

  • Vakalounakis, D. J. (1996). Root and stem rot of cucumber caused by Fusarium oxysporum f. sp. radicis-cucumerinum f. sp. nov. Plant Disease, 80, 313–316.

    Google Scholar 

  • Vakalounakis, D. J., & Fragkiadakis, G. (1999). Genetic diversity of Fusarium oxysporum isolates from cucumber: differentiation by pathogenicity, vegetative compatibility and RAPD fingerprinting. Phytopathology, 89, 161–168.

    CAS  PubMed  Google Scholar 

  • Vakalounakis, D. J., & Lamprou, K. (2018). The Foc gene governs resistance to race 3 of Fusarium oxysporum f. sp. cucumerinum in the cucumber cv. SMR-18. European Journal of Plant Pathology, 152, 653–656.

    CAS  Google Scholar 

  • Vakalounakis, D. J., & Smardas, K. (1995). Genetics of resistance to Fusarium oxysporum f. sp. cucumerinum races 1 and 2 in cucumber line Wisconsin-2757. Annals of Applied Biology, 127, 457–461.

    Google Scholar 

  • Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., et al. (1995). AFLP: a new technique for DNA fingerprinting. Nucleic Acids Research, 23, 4407–4414.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, Y. J. (2005). Studies on molecular marker of fusarium wilt resistance related gene in cucumber (Cucumis sativus L.) (pp. 1–55). Xianyang: Northwest A&F University.

  • Witkowicz, J., Urbanczyk-Wochniak, E., & Przybecki, Z. (2003). AFLP marker polymorphism in cucumber (Cucumis sativus L.) near isogenic lines differing in sex expression. Cellular & Molecular Biology Letters, 8, 375–381.

    CAS  Google Scholar 

  • Xiao, S., An, W., Chen, Z., Zhang, D., Yu, J., & Yang, M. (2012). Occurrences and genotypes of Cryptosporidium oocysts in river network of southern-eastern China. Parasitology Research, 110, 1701–1709.

    PubMed  Google Scholar 

  • Xu, M. L., Huaracha, E., & Korban, S. S. (2001). Development of sequence-characterized amplified regions (SCARs) from amplified fragment length polymorphism (AFLP) markers tightly linked to the Vf gene in apple. Genome, 44, 63–70.

    CAS  PubMed  Google Scholar 

  • Zhang, S., Miao, H., Gu, X., Yang, Y., Xie, B., Wang, X., Huang, S., Du, Y., & Sun, R. (2010). Genetic mapping of the scab resistance gene in cucumber. Journal of the American Society for Horticultural Science, 135, 53–58.

    Google Scholar 

  • Zhang, S., Miao, H., Yang, Y., Xie, B., Wang, Y., & Gu, X. (2014). A major quantitative trait locus conferring resistance to fusarium wilt was detected in cucumber by using recombinant inbred lines. Molecular Breeding, 34, 1805–1815.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was partially funded by the Mediterranean Agronomic Institute of Chania (MAICh), Greece and a starting researcher grant to A.G. Doulis through NAGREF. E.H. Jaber and A.Y. Srour submitted parts of this work in partial fulfilment of their M.Sc. degree requirements at MAICh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Doulis.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest regarding the publication of this article.

Human and animal rights

This article does not contain any research with human and/or animal participants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaber, E.H.A., Srour, A.Y., Zambounis, A.G. et al. Identification of SCAR markers linked to the Foc gene governing resistance to Fusarium oxysporum f. sp. cucumerinum in cucumber cv. SMR-18. Eur J Plant Pathol 157, 845–855 (2020). https://doi.org/10.1007/s10658-020-02045-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-020-02045-2

Keywords

Navigation