Skip to main content
Log in

Molekulare multimodale Hybridbildgebung des Prostata- und Blasenkarzinoms

Molecular multimodal hybrid imaging in prostate and bladder cancer

  • Leitthema
  • Published:
Der Urologe Aims and scope Submit manuscript

Zusammenfassung

Seit Einführung der kombinierten radiologisch-nuklearmedizinischen Bildgebung in Form der Positronenemissionstomographie/Computertomographie (PET/CT) und unlängst auch der PET/Magnetresonanztomographie (PET/MRT) stehen beim Blasen- und Prostatakarzinom neue und z. T. vielversprechende diagnostische Möglichkeiten zur Verfügung. Während beim Blasenkarzinom die PET-basierte Hybridbildgebung bisher nur in ausgewählten Fällen zur Anwendung kommt, zeichnet sich eine Zunahme der PET-Diagnostik beim Prostatakarzinom mit der Entwicklung karzinomspezifischer PET-Tracer ab. Besonders neuartige Liganden des prostataspezifischen Membranantigens (PSMA) besitzen hierbei das Potential, das zukünftige Staging des Prostatakarzinoms nachhaltig zu beeinflussen. Bevor jedoch ein breiter Einsatz in der Routine empfohlen werden kann, sollte eine Evaluierung im Rahmen von prospektiven multizentrischen klinischen Studien erfolgen.

Abstract

Since the introduction of combined radiologic-nuclear imaging procedures like PET/CT and PET/MRI, new and promising diagnostic tools in bladder and prostate cancer imaging are available to physicians. Although PET-based hybrid imaging in bladder cancer is currently utilized only in selected cases, an increase in PET imaging can be observed in prostate cancer due to the development of cancer-specific PET tracers. Especially novel ligands of prostate-specific membrane antigen (PSMA) exhibit great potential to effectively influence future staging of prostate cancer. However, before recommendations for implication in routine staging can be given, evaluation in the context of prospective multicenter clinical trials are mandatory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4

Abbreviations

ADC:

Apparent diffusion coefficient

CT:

Computertomographie

DWI:

Diffusion-weighted imaging, diffusionsgewichtete Messung

FDG:

Fluor-Desoxyglukose

68Ga:

68Gallium

MRT:

Magnetresonanztomographie

PET:

Positronenemissionstomographie

PSMA:

Prostataspezifisches Membranantigen

Literatur

  1. Afshar-Oromieh A, Haberkorn U, Eder M et al (2012) [68Ga]Gallium-labelled PSMA ligand as superior PET tracer for the diagnosis of prostate cancer: comparison with 18F-FECH. Eur J Nucl Med Mol Imaging 39:1085–1086

    Article  PubMed  CAS  Google Scholar 

  2. Akduman EI, Momtahen AJ, Balci NC et al (2008) Comparison between malignant and benign abdominal lymph nodes on diffusion-weighted imaging. Acad Radiol 15:641–646

    Article  PubMed  Google Scholar 

  3. AWMF (2011) Interdisziplinäre Leitlinie der Qualität S3 zur Früherkennung, Diagnose und Therapie der verschiedenen Stadien des Prostatakarzinoms. AWMF, Düsseldorf

  4. Barentsz JO, Richenberg J, Clements R et al (2012) ESUR prostate MR guidelines 2012. Eur Radiol 22:746–757

    Article  PubMed Central  PubMed  Google Scholar 

  5. Beer AJ, Eiber M, Souvatzoglou M et al (2011) Restricted water diffusibility as measured by diffusion-weighted MR imaging and choline uptake in (11)C-choline PET/CT are correlated in pelvic lymph nodes in patients with prostate cancer. Mol Imaging Biol 13:352–361

    Article  PubMed  Google Scholar 

  6. Beheshti M, Haim S, Zakavi R et al (2013) Impact of 18F-choline PET/CT in prostate cancer patients with biochemical recurrence: influence of androgen deprivation therapy and correlation with PSA kinetics. J Nucl Med 54:833–840

    Article  PubMed  CAS  Google Scholar 

  7. Boonsirikamchai P, Choi S, Frank SJ et al (2013) MR imaging of prostate cancer in radiation oncology: what radiologists need to know. Radiographics 33:741–761

    Article  PubMed  Google Scholar 

  8. Bouchelouche K, Turkbey B, Choyke PL (2012) PET/CT and MRI in Bladder Cancer. J Cancer Sci Ther S14, doi:10.4172/1948-5956

  9. Breeuwsma AJ, Rybalov M, Leliveld AM et al (2012) Correlation of [11C]choline PET-CT with time to treatment and disease-specific survival in men with recurrent prostate cancer after radical prostatectomy. Q J Nucl Med Mol Imaging 56:440–446

    PubMed  CAS  Google Scholar 

  10. Brogsitter C, Zophel K, Kotzerke J (2013) 18F-Choline, 11C-choline and 11C-acetate PET/CT: comparative analysis for imaging prostate cancer patients. Eur J Nucl Med Mol Imaging 40(Suppl 1):18–27

    Article  CAS  Google Scholar 

  11. Bücheler E, Lackner KL, Thelen M (2006) Einführung in die Radiologie, Diagnostik und Intervention, 11. Aufl. Thieme, Stuttgart, S 606

  12. Bundschuh RA, Wendl CM, Weirich G et al (2013) Tumour volume delineation in prostate cancer assessed by [11C]choline PET/CT: validation with surgical specimens. Eur J Nucl Med Mol Imaging 40:824–831

    Article  PubMed  Google Scholar 

  13. Ceci F, Castellucci P, Mamede M et al (2013) (11)C-Choline PET/CT in patients with hormone-resistant prostate cancer showing biochemical relapse after radical prostatectomy. Eur J Nucl Med Mol Imaging 40:149–155

    Article  PubMed  CAS  Google Scholar 

  14. Daneshmand S, Ahmadi H, Huynh LN et al (2012) Preoperative staging of invasive bladder cancer with dynamic gadolinium-enhanced magnetic resonance imaging: results from a prospective study. Urology 80:1313–1318

    Article  PubMed  Google Scholar 

  15. Eiber M, Beer AJ, Holzapfel K et al (2010) Preliminary results for characterization of pelvic lymph nodes in patients with prostate cancer by diffusion-weighted MR-imaging. Invest Radiol 45:15–23

    Article  PubMed  Google Scholar 

  16. Eiber M, Holzapfel K, Ganter C et al (2011) Whole-body MRI including diffusion-weighted imaging (DWI) for patients with recurring prostate cancer: technical feasibility and assessment of lesion conspicuity in DWI. J Magn Reson Imaging 33:1160–1170

    Article  PubMed  Google Scholar 

  17. Eiber M, Souvatzoglou M, Maurer T et al (2013) Initial experience in restaging of patients with recurrent prostate cancer: comparison of 11C-Choline-PET/MR and 11C-Choline-PET/CT. Soc Nucl Med Annu Meet Abstr 5:343

    Google Scholar 

  18. Eschmann SM, Pfannenberg AC, Rieger A et al (2007) Comparison of 11C-choline-PET/CT and whole body-MRI for staging of prostate cancer. Nuklearmedizin 46:161–168

    PubMed  CAS  Google Scholar 

  19. Evangelista L, Guttilla A, Zattoni F et al (2013) Utility of choline positron emission tomography/computed tomography for lymph node involvement identification in intermediate- to high-risk prostate cancer: a systematic literature review and meta-analysis. Eur Urol 63:1040–1048

    Article  PubMed  Google Scholar 

  20. Evangelista L, Zattoni F, Guttilla A et al (2013) Choline PET or PET/CT and biochemical relapse of prostate cancer: a systematic review and meta-analysis. Clin Nucl Med 38:305–314

    Article  PubMed  Google Scholar 

  21. Even-Sapir E, Metser U, Mishani E et al (2006) The detection of bone metastases in patients with high-risk prostate cancer: 99mTc-MDP Planar bone scintigraphy, single- and multi-field-of-view SPECT, 18F-fluoride PET, and 18F-fluoride PET/CT. J Nucl Med 47:287–297

    PubMed  Google Scholar 

  22. Fuccio C, Castellucci P, Schiavina R et al (2012) Role of 11C-choline PET/CT in the re-staging of prostate cancer patients with biochemical relapse and negative results at bone scintigraphy. Eur J Radiol 81:893–896

    Article  Google Scholar 

  23. Fuccio C, Castellucci P, Schiavina R et al (2010) Role of 11C-choline PET/CT in the restaging of prostate cancer patients showing a single lesion on bone scintigraphy. Ann Nucl Med 24:485–492

    Article  PubMed  CAS  Google Scholar 

  24. Fuccio C, Schiavina R, Castellucci P et al (2011) Androgen deprivation therapy influences the uptake of 11C-choline in patients with recurrent prostate cancer: the preliminary results of a sequential PET/CT study. Eur J Nucl Med Mol Imaging 38:1985–1989

    Article  PubMed  CAS  Google Scholar 

  25. Giannarini G, Nguyen DP, Thalmann GN et al (2012) Diffusion-weighted magnetic resonance imaging detects local recurrence after radical prostatectomy: initial experience. Eur Urol 61:616–620

    Article  PubMed  Google Scholar 

  26. Giovacchini G, Picchio M, Garcia-Parra R et al (2014) 11C-Choline PET/CT predicts prostate cancer-specific survival in patients with biochemical failure during androgen-deprivation therapy. J Nucl Med (Epub ahead of print)

  27. Giovacchini G, Picchio M, Parra RG et al (2012) Prostate-specific antigen velocity versus prostate-specific antigen doubling time for prediction of 11C choline PET/CT in prostate cancer patients with biochemical failure after radical prostatectomy. Clin Nucl Med 37:325–331

    Article  PubMed  Google Scholar 

  28. Gofrit ON, Mishani E, Orevi M et al (2006) Contribution of 11C-choline positron emission tomography/computerized tomography to preoperative staging of advanced transitional cell carcinoma. J Urol 176:940–944

    Article  PubMed  Google Scholar 

  29. Golan S, Sopov V, Baniel J et al (2011) Comparison of 11C-choline with 18F-FDG in positron emission tomography/computerized tomography for staging urothelial carcinoma: a prospective study. J Urol 186:436–441

    Article  PubMed  Google Scholar 

  30. Goodfellow H, Viney Z, Hughes P et al (2013) Role of Fdg Pet-Ct in the staging of bladder cancer. BJU Int (Epub ahead of print). doi: 10.1111/bju.12608

  31. Goodman OB Jr, Barwe SP, Ritter B et al (2007) Interaction of prostate specific membrane antigen with clathrin and the adaptor protein complex-2. Int J Oncol 31:1199–1203

    PubMed  CAS  Google Scholar 

  32. Gutzeit A, Doert A, Froehlich JM et al (2010) Comparison of diffusion-weighted whole body MRI and skeletal scintigraphy for the detection of bone metastases in patients with prostate or breast carcinoma. Skeletal Radiol 39:333–343

    Article  PubMed  Google Scholar 

  33. Haseebuddin M, Dehdashti F, Siegel BA et al (2013) 11C-acetate PET/CT before radical prostatectomy: nodal staging and treatment failure prediction. J Nucl Med 54:699–706

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Heck MM, Souvatzoglou M, Retz M et al (2013) Prospective comparison of computed tomography, diffusion-weighted magnetic resonance imaging and [C]choline positron emission tomography/computed tomography for preoperative lymph node staging in prostate cancer patients. Eur J Nucl Med Mol Imaging 44(5):340–342

    Google Scholar 

  35. Henry MD, Wen S, Silva MD et al (2004) A prostate-specific membrane antigen-targeted monoclonal antibody-chemotherapeutic conjugate designed for the treatment of prostate cancer. Cancer Res 64:7995–8001

    Article  PubMed  CAS  Google Scholar 

  36. Hitier-Berthault M, Ansquer C, Branchereau J et al (2013) 18 F-fluorodeoxyglucose positron emission tomography-computed tomography for preoperative lymph node staging in patients undergoing radical cystectomy for bladder cancer: a prospective study. Int J Urol 20:788–796

    Article  PubMed  CAS  Google Scholar 

  37. Hovels AM, Heesakkers RA, Adang EM et al (2008) The diagnostic accuracy of CT and MRI in the staging of pelvic lymph nodes in patients with prostate cancer: a meta-analysis. Clin Radiol 63:387–395

    Article  PubMed  CAS  Google Scholar 

  38. Hricak H, Choyke PL, Eberhardt SC et al (2007) Imaging prostate cancer: a multidisciplinary perspective. Radiology 243:28–53

    Article  PubMed  Google Scholar 

  39. Issa B (2002) In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissues using echo-planar imaging. J Magn Reson Imaging 16:196–200

    Article  PubMed  Google Scholar 

  40. Jacobs MA, Ouwerkerk R, Petrowski K et al (2008) Diffusion-weighted imaging with apparent diffusion coefficient mapping and spectroscopy in prostate cancer. Top Magn Reson Imaging 19:261–272

    Article  PubMed Central  PubMed  Google Scholar 

  41. Jadvar H (2013) Imaging evaluation of prostate cancer with 18F-fluorodeoxyglucose PET/CT: utility and limitations. Eur J Nucl Med Mol Imaging 40(Suppl 1):5–10

    Article  CAS  Google Scholar 

  42. Jadvar H, Desai B, Ji L et al (2013) Baseline 18F-FDG PET/CT parameters as imaging biomarkers of overall survival in castrate-resistant metastatic prostate cancer. J Nucl Med 54:1195–1201

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  43. Kahkonen E, Jambor I, Kemppainen J et al (2013) In vivo imaging of prostate cancer using [68Ga]-labeled bombesin analog BAY86-7548. Clin Cancer Res 19:5434–5443

    Article  PubMed  Google Scholar 

  44. Kibel AS, Dehdashti F, Katz MD et al (2009) Prospective study of [18F]fluorodeoxyglucose positron emission tomography/computed tomography for staging of muscle-invasive bladder carcinoma. J Clin Oncol 27:4314–4320

    Article  PubMed  Google Scholar 

  45. Kim CK, Park BK, Park W et al (2010) Prostate MR imaging at 3T using a phased-arrayed coil in predicting locally recurrent prostate cancer after radiation therapy: preliminary experience. Abdom Imaging 35:246–252

    Article  PubMed  Google Scholar 

  46. Kim JK, Kim KA, Park BW et al (2008) Feasibility of diffusion-weighted imaging in the differentiation of metastatic from nonmetastatic lymph nodes: early experience. J Magn Reson Imaging 28:714–719

    Article  PubMed  Google Scholar 

  47. Krause BJ, Souvatzoglou M, Treiber U (2013) Imaging of prostate cancer with PET/CT and radioactively labeled choline derivates. Urol Oncol 31:427–435

    Article  PubMed  CAS  Google Scholar 

  48. Krause BJ, Souvatzoglou M, Tuncel M et al (2008) The detection rate of [11C]choline-PET/CT depends on the serum PSA-value in patients with biochemical recurrence of prostate cancer. Eur J Nucl Med Mol Imaging 35:18–23

    Article  PubMed  CAS  Google Scholar 

  49. Lecouvet FE, El Mouedden J, Collette L et al (2012) Can whole-body magnetic resonance imaging with diffusion-weighted imaging replace Tc 99m bone scanning and computed tomography for single-step detection of metastases in patients with high-risk prostate cancer? Eur Urol 62:68–75

    Article  PubMed  Google Scholar 

  50. Liedberg F, Bendahl PO, Davidsson T et al (2013) Preoperative staging of locally advanced bladder cancer before radical cystectomy using 3 tesla magnetic resonance imaging with a standardized protocol. Scand J Urol 47:108–112

    Article  PubMed  Google Scholar 

  51. Liu Y, Hu X, Liu H et al (2013) A comparative study of radiolabeled bombesin analogs for the PET imaging of prostate cancer. J Nucl Med 54:2132–2138

    Article  PubMed  CAS  Google Scholar 

  52. Lu YY, Chen JH, Liang JA et al (2012) Clinical value of FDG PET or PET/CT in urinary bladder cancer: a systemic review and meta-analysis. Eur J Radiol 81:2411–2416

    Article  PubMed  Google Scholar 

  53. Mamede M, Ceci F, Castellucci P et al (2013) The role of 11C-choline PET imaging in the early detection of recurrence in surgically treated prostate cancer patients with very low PSA level < 0.5 ng/mL. Clin Nucl Med 38:342–345

    Article  Google Scholar 

  54. Manenti G, Squillaci E, Di Roma M et al (2006) In vivo measurement of the apparent diffusion coefficient in normal and malignant prostatic tissue using thin-slice echo-planar imaging. Radiol Med 111:1124–1133

    Article  PubMed  CAS  Google Scholar 

  55. Marzola MC, Chondrogiannis S, Ferretti A et al (2013) Role of 18F-choline PET/CT in biochemically relapsed prostate cancer after radical prostatectomy: correlation with trigger PSA, PSA velocity, PSA doubling time, and metastatic distribution. Clin Nucl Med 38:26–32

    Article  Google Scholar 

  56. Maurer T, Beer AJ, Souvatzoglou M et al (2014) 68Gallium-labelled ligand of prostate-specific membrane antigen (PSMA) for the evaluation of recurrent prostate cancer using PET/CT and PET/MR imaging. Eur Urol (Suppl) (Epub ahead of print)

  57. Maurer T, Beer AJ, Souvatzoglou M et al (2014) Staging of intermediate and high-risk prostate cancer using whole body 68Gallium-labelled ligand of prostate-specific membrane antigen PET/MRI. J Urol (Suppl) (Epub ahead of print)

  58. Maurer T, Horn T, Beer AJ et al (2013) Functional imaging in bladder cancer. Urologe A 52:509–514

    Article  PubMed  CAS  Google Scholar 

  59. Maurer T, Souvatzoglou M, Kubler H et al (2012) Diagnostic efficacy of [11C]choline positron emission tomography/computed tomography compared with conventional computed tomography in lymph node staging of patients with bladder cancer prior to radical cystectomy. Eur Urol 61:1031–1038

    Article  PubMed  Google Scholar 

  60. Mease RC, Foss CA, Pomper MG (2013) PET imaging in prostate cancer: focus on prostate-specific membrane antigen. Curr Top Med Chem 13:951–962

    Article  PubMed  CAS  Google Scholar 

  61. Mertens LS, Bruin NM, Vegt E et al (2012) Catheter-assisted 18F-FDG-PET/CT imaging of primary bladder cancer: a prospective study. Nucl Med Commun 33:1195–1201

    Article  PubMed  Google Scholar 

  62. Mertens LS, Fioole-Bruining A, Vegt E et al (2013) Impact of (18) F-fluorodeoxyglucose (FDG)-positron-emission tomography/computed tomography (PET/CT) on management of patients with carcinoma invading bladder muscle. BJU Int 112:729–734

    Article  PubMed  CAS  Google Scholar 

  63. Mohsen B, Giorgio T, Rasoul ZS et al (2013) Application of (11) C-acetate positron-emission tomography (PET) imaging in prostate cancer: systematic review and meta-analysis of the literature. BJU Int 112:1062–1072

    Article  PubMed  CAS  Google Scholar 

  64. Murphy GP, Elgamal AA, Su SL et al (1998) Current evaluation of the tissue localization and diagnostic utility of prostate specific membrane antigen. Cancer 83:2259–2269

    Article  PubMed  CAS  Google Scholar 

  65. Nanni C, Schiavina R, Boschi S et al (2013) Comparison of 18F-FACBC and 11C-choline PET/CT in patients with radically treated prostate cancer and biochemical relapse: preliminary results. Eur J Nucl Med Mol Imaging 40(Suppl 1):11–17

    Article  CAS  Google Scholar 

  66. Nayak B, Dogra PN, Naswa N et al (2013) Diuretic 18F-FDG PET/CT imaging for detection and locoregional staging of urinary bladder cancer: prospective evaluation of a novel technique. Eur J Nucl Med Mol Imaging 40:386–393

    Article  PubMed  CAS  Google Scholar 

  67. Orevi M, Klein M, Mishani E et al (2012) 11C-acetate PET/CT in bladder urothelial carcinoma: intraindividual comparison with 11C-choline. Clin Nucl Med 37:67–72

    Article  Google Scholar 

  68. Osborne JR, Akhtar NH, Vallabhajosula S et al (2013) Prostate-specific membrane antigen-based imaging. Urol Oncol 31:144–154

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  69. Panebianco V, Barchetti F, Sciarra A et al (2013) Prostate cancer recurrence after radical prostatectomy: the role of 3-T diffusion imaging in multi-parametric magnetic resonance imaging. Eur Radiol 23:1745–1752

    Article  PubMed  Google Scholar 

  70. Puech P, Potiron E, Lemaitre L et al (2009) Dynamic contrast-enhanced-magnetic resonance imaging evaluation of intraprostatic prostate cancer: correlation with radical prostatectomy specimens. Urology 74:1094–1099

    Article  PubMed  Google Scholar 

  71. Reske SN, Blumstein NM, Neumaier B et al (2006) Imaging prostate cancer with 11C-choline PET/CT. J Nucl Med 47:1249–1254

    PubMed  CAS  Google Scholar 

  72. Richter S, Wuest M, Krieger SS et al (2013) Synthesis and radiopharmacological evaluation of a high-affinity and metabolically stabilized 18F-labeled bombesin analogue for molecular imaging of gastrin-releasing peptide receptor-expressing prostate cancer. Nucl Med Biol 40:1025–1034

    Article  PubMed  CAS  Google Scholar 

  73. Rioja Zuazu J, Rodriguez M, Rincon Mayans A et al (2009) Usefulness of PET scans in diagnosing recurrent prostate cancer. Prostate with PSA level < 5 ng/ml. Actas Urol Esp 33:844–852

    Article  Google Scholar 

  74. Saokar A, Islam T, Jantsch M et al (2010) Detection of lymph nodes in pelvic malignancies with computed tomography and magnetic resonance imaging. Clin Imaging 34:361–366

    Article  PubMed  Google Scholar 

  75. Schiavina R, Concetti S, Brunocilla E et al (2013) First case of F-FACBC PET/CT-guided salvage retroperitoneal lymph node dissection for disease relapse after radical prostatectomy for prostate cancer and negative C-Choline PET/CT: new imaging techniques may expand pioneering approaches. Urol Int 92:242–245

    Article  PubMed  Google Scholar 

  76. Schoder H, Ong SC, Reuter VE et al (2012) Initial results with (11)C-acetate positron emission tomography/computed tomography (PET/CT) in the staging of urinary bladder cancer. Mol Imaging Biol 14:245–251

    Article  PubMed  Google Scholar 

  77. Shariat SF, Ehdaie B, Rink M et al (2012) Clinical nodal staging scores for bladder cancer: a proposal for preoperative risk assessment. Eur Urol 61:237–242

    Article  PubMed  Google Scholar 

  78. Silver DA, Pellicer I, Fair WR et al (1997) Prostate-specific membrane antigen expression in normal and malignant human tissues. Clin Cancer Res 3:81–85

    PubMed  CAS  Google Scholar 

  79. Souvatzoglou M, Eiber M, Martinez-Moeller A et al (2013) PET/MR in prostate cancer: technical aspects and potential diagnostic value. Eur J Nucl Med Mol Imaging 40(Suppl 1):79–88

    Article  Google Scholar 

  80. Souvatzoglou M, Eiber M, Takei T et al (2013) Comparison of integrated whole-body [11C]choline PET/MR with PET/CT in patients with prostate cancer. Eur J Nucl Med Mol Imaging 40:1486–1499

    Article  PubMed  CAS  Google Scholar 

  81. Souvatzoglou M, Weirich G, Schwarzenboeck S et al (2011) The sensitivity of [11C]choline PET/CT to localize prostate cancer depends on the tumor configuration. Clin Cancer Res 17:3751–3759

    Article  PubMed  Google Scholar 

  82. Stenzl A, Cowan NC, De Santis M et al (2011) Treatment of muscle-invasive and metastatic bladder cancer: update of the EAU guidelines. Eur Urol 59:1009–1018

    Article  PubMed  CAS  Google Scholar 

  83. Swinnen G, Maes A, Pottel H et al (2010) FDG-PET/CT for the preoperative lymph node staging of invasive bladder cancer. Eur Urol 57:641–647

    Article  PubMed  Google Scholar 

  84. Taoka T, Mayr NA, Lee HJ et al (2001) Factors influencing visualization of vertebral metastases on MR imaging versus bone scintigraphy. AJR Am J Roentgenol 176:1525–1530

    Article  PubMed  CAS  Google Scholar 

  85. Treglia G, Ceriani L, Sadeghi R et al (2013) Relationship between prostate-specific antigen kinetics and detection rate of radiolabelled choline PET/CT in restaging prostate cancer patients: a meta-analysis. Clin Chem Lab Med 1–9

  86. Umbehr MH, Muntener M, Hany T et al (2013) The role of 11C-choline and 18F-fluorocholine positron emission tomography (PET) and PET/CT in prostate cancer: a systematic review and meta-analysis. Eur Urol 64:106–117

    Article  PubMed  Google Scholar 

  87. Vargas HA, Akin O, Schoder H et al (2012) Prospective evaluation of MRI, (1)(1)C-acetate PET/CT and contrast-enhanced CT for staging of bladder cancer. Eur J Radiol 81:4131–4137

    Article  PubMed  CAS  Google Scholar 

  88. Vicente AM, Castrejon AS, Munoz AP et al (2010) Impact of 18F-FDG PET/CT with retrograde filling of the urinary bladder in patients with suspected pelvic malignancies. J Nucl Med Technol 38:128–137

    Article  PubMed  Google Scholar 

  89. Von Eyben FE, Kairemo K (2013) Meta-analysis of 11C-choline and 18F-choline PET/CT for management of patients with prostate cancer. Nucl Med Commun 38(5):305–14

    Article  Google Scholar 

  90. Wang L, Hricak H, Kattan MW et al (2006) Combined endorectal and phased-array MRI in the prediction of pelvic lymph node metastasis in prostate cancer. AJR Am J Roentgenol 186:743–748

    Article  PubMed  Google Scholar 

  91. Watanabe H, Kanematsu M, Kondo H et al (2010) Preoperative detection of prostate cancer: a comparison with 11C-choline PET, 18F-fluorodeoxyglucose PET and MR imaging. J Magn Reson Imaging 31:1151–1156

    Article  PubMed  Google Scholar 

  92. Wondergem M, Van Der Zant FM, Van Der Ploeg T et al (2013) A literature review of 18F-fluoride PET/CT and 18F-choline or 11C-choline PET/CT for detection of bone metastases in patients with prostate cancer. Nucl Med Commun 34:935–945

    Article  PubMed  CAS  Google Scholar 

  93. Yerram NK, Volkin D, Turkbey B et al (2012) Low suspicion lesions on multiparametric magnetic resonance imaging predict for the absence of high-risk prostate cancer. BJU Int 110:783–788

    Article  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. Tobias Maurer, Matthias Eiber und Bernd J. Krause geben an, dass kein Interessenkonflikt besteht. Alle im vorliegenden Manuskript beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Maurer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maurer, T., Eiber, M. & Krause, B. Molekulare multimodale Hybridbildgebung des Prostata- und Blasenkarzinoms. Urologe 53, 469–483 (2014). https://doi.org/10.1007/s00120-014-3440-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00120-014-3440-5

Schlüsselwörter

Keywords

Navigation