Skip to main content
Log in

PET/MR in prostate cancer: technical aspects and potential diagnostic value

  • Review Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

PET/MR is a new multimodal imaging technique that is expected to improve diagnostic performance of imaging in conditions in which assessment of changes in soft tissue is important such as prostate cancer. Despite substantial changes in PET technology compared to PET/CT, initial studies have demonstrated that integrated PET/MR provides comparable image quality to that of PET/CT, retaining PET quantification efficacy. In this review we briefly describe technological changes compared to PET/CT that made integrated PET/MR possible, propose acquisition protocols for evaluation of prostate cancer with this new multimodal approach, present initial results concerning the application of PET/MR in prostate cancer, and outline the potential for further clinical applications, focusing on potential incremental value compared to present diagnostic performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403.

    Article  PubMed  CAS  Google Scholar 

  2. Freedland SJ, Presti Jr JC, Amling CL, Kane CJ, Aronson WJ, Dorey F, et al. Time trends in biochemical recurrence after radical prostatectomy: results of the SEARCH database. Urology. 2003;61(4):736–41.

    Article  PubMed  Google Scholar 

  3. Han M, Partin AW, Zahurak M, Piantadosi S, Epstein JI, Walsh PC. Biochemical (prostate specific antigen) recurrence probability following radical prostatectomy for clinically localized prostate cancer. J Urol. 2003;169(2):517–23.

    Article  PubMed  Google Scholar 

  4. Chism DB, Hanlon AL, Horwitz EM, Feigenberg SJ, Pollack A. A comparison of the single and double factor high-risk models for risk assignment of prostate cancer treated with 3D conformal radiotherapy. Int J Radiat Oncol Biol Phys. 2004;59(2):380–5.

    Article  PubMed  Google Scholar 

  5. Smith RA, Cokkinides V, Eyre HJ. Cancer screening in the United States. 2007: a review of current guidelines, practices, and prospects. CA Cancer J Clin. 2007;57(2):90–104.

    Article  PubMed  CAS  Google Scholar 

  6. Souvatzoglou M, Gaertner FC, Schwarzenboeck S, Beer AJ, Schwaiger M, Krause BJ. PET/CT for the diagnosis, staging and restaging of prostate cancer. Imaging Med. 2011;3(5):571–85. Review.

    Article  Google Scholar 

  7. Weber WA, Grosu AL, Czernin J. Technology insight: advances in molecular imaging and an appraisal of PET/CT scanning. Nat Clin Pract Oncol. 2008;5(3):160–70.

    Article  PubMed  CAS  Google Scholar 

  8. Castellucci P, Fuccio C, Nanni C, Santi I, Rizzello A, Lodi F, et al. Influence of trigger PSA and PSA kinetics on 11C-choline PET/CT detection rate in patients with biochemical relapse after radical prostatectomy. J Nucl Med. 2009;50(9):1394–400.

    Article  PubMed  Google Scholar 

  9. Giovacchini G, Picchio M, Coradeschi E, Bettinardi V, Gianolli L, Scattoni V, et al. Predictive factors of [(11)C]choline PET/CT in patients with biochemical failure after radical prostatectomy. Eur J Nucl Med Mol Imaging. 2010;37(2):301–9.

    Article  PubMed  Google Scholar 

  10. Hricak H, Choyke PL, Eberhardt SC, Leibel SA, Scardino PT. Imaging prostate cancer: a multidisciplinary perspective. Radiology. 2007;243(1):28–53. Review.

    Article  PubMed  Google Scholar 

  11. Beer AJ, Eiber M, Souvatzoglou M, Schwaiger M, Krause BJ. Radionuclide and hybrid imaging of recurrent prostate cancer. Lancet Oncol. 2011;12(2):181–91. Review.

    Article  PubMed  Google Scholar 

  12. Antoch G, Bockisch A. Combined PET/MRI: a new dimension in whole-body oncology imaging? Eur J Nucl Med Mol Imaging. 2009;36 Suppl 1:S113–20.

    Article  PubMed  Google Scholar 

  13. Schlemmer HP, Pichler BJ, Krieg R, Heiss WD. An integrated MR/PET system: prospective applications. Abdom Imaging. 2009;34:668–74.

    Article  PubMed  Google Scholar 

  14. Kuhn FP, Crook DW, Mader CE, Appenzeller P, von Schulthess GK, Schmid DT. Discrimination and anatomical mapping of PET-positive lesions: comparison of CT attenuation-corrected PET images with coregistered MR and CT images in the abdomen. Eur J Nucl Med Mol Imaging. 2013;40(1):44–51.

    Article  PubMed  Google Scholar 

  15. Zaidi H, Ojha N, Morich M, Griesmer J, Hu Z, Maniawski P, et al. Design and performance evaluation of a whole-body ingenuity TF PET-MRI system. Phys Med Biol. 2011;56(10):3091–106.

    Article  PubMed  CAS  Google Scholar 

  16. Delso G, Fürst S, Jakoby B, Ladebeck R, Ganter C, Nekolla SG, et al. Performance measurements of the Siemens mMR integrated whole-body PET/MR scanner. J Nucl Med. 2011;52:1914–22.

    Article  PubMed  Google Scholar 

  17. Martinez-Möller A, Souvatzoglou M, Delso G, Bundschuh RA, Chefd'hotel C, Ziegler SI, et al. Tissue classification as a potential approach for attenuation correction in whole-body PET/MRI: evaluation with PET/CT data. J Nucl Med. 2009;50:520–6.

    Article  PubMed  Google Scholar 

  18. Schulz V, Torres-Espallardo I, Renisch S, Hu Z, Ojha N, Börnert P, et al. Automatic, three-segment, MR-based attenuation correction for whole-body PET/MR data. Eur J Nucl Med Mol Imaging. 2011;38:138–52.

    Article  PubMed  CAS  Google Scholar 

  19. Eiber M, Martinez-Möller A, Souvatzoglou M, Holzapfel K, Pickhard A, Löffelbein D, et al. Value of a Dixon-based MR/PET attenuation correction sequence for the localization and evaluation of PET-positive lesions. Eur J Nucl Med Mol Imaging. 2011;38(9):1691–701.

    Article  PubMed  Google Scholar 

  20. Drzezga A, Souvatzoglou M, Eiber M, Beer AJ, Fürst S, Martinez-Möller A, et al. First clinical experience of integrated whole-body PET/MR: comparison to PET/CT in patients with oncological diagnoses. J Nucl Med. 2012;53:845–55.

    Article  PubMed  Google Scholar 

  21. Hofmann M, Bezrukov I, Mantlik F, Aschoff P, Steinke F, Beyer T, et al. MRI-based attenuation correction for whole-body PET/MRI: quantitative evaluation of segmentation- and atlas-based methods. J Nucl Med. 2011;52:1392–9.

    Article  PubMed  Google Scholar 

  22. Delso G, Martinez-Möller A, Bundschuh R, Ladebeck R, Candidus Y, Faul D, et al. Evaluation of the attenuation properties of MR equipment for its use in a whole-body PET/MR scanner. Phys Med Biol. 2010;55(15):4361–74.

    Article  PubMed  CAS  Google Scholar 

  23. Tellmann L, Herzog H, Quick HH, Bockisch A, Beyer T. The effect of MR surface coils on PET quantification in whole-body PET/MR: results from a pseudo-PET/MR phantom study. Med Phys. 2011;38(5):2795–805.

    Article  PubMed  CAS  Google Scholar 

  24. Gaertner FC, Beer AJ, Souvatzoglou M, Eiber M, Fürst S, Ziegler SI, et al. Evaluation of feasibility and image quality of 68Ga-DOTATOC positron emission tomography/magnetic resonance in comparison with positron emission tomography/computed tomography in patients with neuroendocrine tumors. Invest Radiol. 2013;48(5):263–72.

    Article  PubMed  Google Scholar 

  25. Souvatzoglou M, Eiber M, Takai T, Fuerst S, Drzezga A, Ziegler S, et al. Integrated simultaneous [11C]choline PET/MR in patients with prostate cancer. Comparison with PET/CT. Eur J Nucl Med Mol Imaging. 2012;39 Suppl 2:S254. Abstract.

    Google Scholar 

  26. Martinez-Möller A, Eiber M, Nekolla SG, Souvatzoglou M, Drzezga A, Ziegler S, et al. Workflow and scan protocol considerations for integrated whole-body PET/MRI in oncology. J Nucl Med. 2012;53(9):1415–26.

    Article  PubMed  Google Scholar 

  27. Djavan B, Ravery V, Zlotta A, Dobronski P, Dobrovits M, Fakhari M, et al. Prospective evaluation of prostate cancer detected on biopsies 1, 2, 3 and 4: when should we stop? J Urol. 2001;166(5):1679–83.

    Article  PubMed  CAS  Google Scholar 

  28. Noguchi M, Stamey TA, McNeal JE, Yemoto CM. Relationship between systematic biopsies and histological features of 222 radical prostatectomy specimens: lack of prediction of tumor significance for men with nonpalpable prostate cancer. J Urol. 2001;166(1):104–9.

    Article  PubMed  CAS  Google Scholar 

  29. Hoeks CM, Barentsz JO, Hambrock T, Yakar D, Somford DM, Heijmink SW, et al. Prostate cancer: multiparametric MR imaging for detection, localization, and staging. Radiology. 2011;261(1):46–66. Review.

    Article  PubMed  Google Scholar 

  30. Delongchamps NB, Rouanne M, Flam T, Beuvon F, Liberatore M, Zerbib M, et al. Multiparametric magnetic resonance imaging for the detection and localization of prostate cancer: combination of T2-weighted, dynamic contrast-enhanced and diffusion-weighted imaging. BJU Int. 2011;107(9):1411–8.

    Article  PubMed  Google Scholar 

  31. Souvatzoglou M, Weirich G, Schwarzenboeck S, Maurer T, Schuster T, Bundschuh RA, et al. The sensitivity of [11C]choline PET/CT to localize prostate cancer depends on the tumor configuration. Clin Cancer Res. 2011;17(11):3751–9.

    Article  PubMed  Google Scholar 

  32. Park H, Wood D, Hussain H, Meyer CR, Shah RB, Johnson TD, et al. Introducing parametric fusion PET/MRI of primary prostate cancer. J Nucl Med. 2012;53(4):546–51.

    Article  PubMed  CAS  Google Scholar 

  33. Jambor I, Borra R, Kemppainen J, Lepomäki V, Parkkola R, Dean K, et al. Improved detection of localized prostate cancer using co-registered MRI and 11C-acetate PET/CT. Eur J Radiol. 2012;81(11):2966–72.

    Article  PubMed  Google Scholar 

  34. Pace L, Nicolai E, Aiello M, Catalano O, Salvatore M. Whole-body PET/MRI in oncology: current status and clinical applications. Clin Transl Imaging. 2013;I:31–44. doi:10.1007/s40336-013-0012-4. Review.

    Article  Google Scholar 

  35. Takei T, Souvatzoglou M, Beer AJ, Drzezga A, Ziegler S, Rummeny EJ, et al. A case of multimodality multiparametric 11C-choline PET/MR for biopsy targeting in prior biopsy-negative primary prostate cancer. Clin Nucl Med. 2012;37(9):918–9.

    Article  PubMed  Google Scholar 

  36. Afshar-Oromieh A, Malcher A, Eder M, Eisenhut M, Linhart HG, Hadaschik BA, et al. PET imaging with a [(68)Ga]gallium-labelled PSMA ligand for the diagnosis of prostate cancer: biodistribution in humans and first evaluation of tumour lesions. Eur J Nucl Med Mol Imaging. 2013;40(4):486–95.

    Article  PubMed  CAS  Google Scholar 

  37. Vargas HA, Wassberg C, Akin O, Hricak H. MR imaging of treated prostate cancer. Radiology. 2012;262(1):26–42. Review.

    Article  PubMed  Google Scholar 

  38. Cirillo S, Petracchini M, Scotti L, Gallo T, Macera A, Bona MC, et al. Endorectal magnetic resonance imaging at 1.5 T to assess local recurrence following radical prostatectomy using T2-weighted and contrast-enhanced imaging. Eur Radiol. 2009;19(3):761–9.

    Article  PubMed  Google Scholar 

  39. Eiber M, Souvatzoglou M, Geinitz H, Rummeny EJ, Schwaiger M, Beer AJ. First clinical experience in restaging of patients with recurrent prostate cancer by 11C-choline-PET/MR: comparison with 11C-choline-PET/CT. Eur J Nucl Med Mol Imaging. 2012;39 Suppl 2:S174. Abstract.

    Google Scholar 

  40. Beresford MJ, Gillatt D, Benson RJ, Ajithkumar T. A systematic review of the role of imaging before salvage radiotherapy for post-prostatectomy biochemical recurrence. Clin Oncol. 2010;22:46–55. Review.

    Article  CAS  Google Scholar 

  41. Heidenreich A, Bastian PJ, Bellmunt J, Bolla M, Joniau S, Mason MD, et al. Guidelines on prostate cancer. European Association of Urology 2012. http://www.uroweb.org/gls/pdf/08%20Prostate%20Cancer_LR%20March%2013th%202012.pdf. Accessed 9 May 2013.

  42. Eiber M, Beer AJ, Holzapfel K, Tauber R, Ganter C, Weirich G, et al. Preliminary results for characterization of pelvic lymph nodes in patients with prostate cancer by diffusion-weighted MR-imaging. Invest Radiol. 2010;45:15–23.

    Article  PubMed  Google Scholar 

  43. Even-Sapir E. Imaging of malignant bone involvement by morphologic, scintigraphic, and hybrid modalities. J Nucl Med. 2005;46(8):1356–67.

    PubMed  Google Scholar 

  44. Rybak LD, Rosenthal DI. Radiological imaging for the diagnosis of bone metastases. Q J Nucl Med. 2001;45(1):53–64.

    PubMed  CAS  Google Scholar 

  45. Rosenthal DI. Radiologic diagnosis of bone metastases. Cancer. 1997;80(8 Suppl):1595–607.

    Article  PubMed  CAS  Google Scholar 

  46. Nakanishi K, Kobayashi M, Nakaguchi K, Kyakuno M, Hashimoto N, Onishi H, et al. Whole-body MRI for detecting metastatic bone tumor: diagnostic value of diffusion-weighted images. Magn Reson Med Sci. 2007;6:147–55.

    Article  PubMed  Google Scholar 

  47. Luboldt W, Kufer R, Blumstein N, Toussaint TL, Kluge A, Seemann MD, et al. Prostate carcinoma: diffusion-weighted imaging as potential alternative to conventional MR and 11C-choline PET/CT for detection of bone metastases. Radiology. 2008;249:1017–25.

    Article  PubMed  Google Scholar 

  48. Eschmann SM, Pfannenberg AC, Rieger A, Aschoff P, Müller M, Paulsen F, et al. Comparison of 11C-choline-PET/CT and whole body-MRI for staging of prostate cancer. Nuklearmedizin. 2007;46:161–8.

    PubMed  CAS  Google Scholar 

  49. Sieren JC, Ohno Y, Koyama H, Sugimura K, McLennan G. Recent technological and application developments in computed tomography and magnetic resonance imaging for improved pulmonary nodule detection and lung cancer staging. J Magn Reson Imaging. 2010;32(6):1353–69. Review.

    Article  PubMed  Google Scholar 

  50. Koyama H, Ohno Y, Kono A, Takenaka D, Maniwa Y, Nishimura Y, et al. Quantitative and qualitative assessment of non-contrast-enhanced pulmonary MR imaging for management of pulmonary nodules in 161 subjects. Eur Radiol. 2008;18(10):2120–31.

    Article  PubMed  Google Scholar 

  51. Stolzmann P, Veit-Haibach P, Chuck N, Rossi C, Frauenfelder T, Alkadhi H, et al. Detection rate, location, and size of pulmonary nodules in trimodality PET/CT-MR: comparison of low-dose CT and Dixon-based MR imaging. Invest Radiol. 2013;48(5):241–6.

    Article  PubMed  Google Scholar 

  52. Bubendorf L, Schöpfer A, Wagner U, Sauter G, Moch H, Willi N, et al. Metastatic patterns of prostate cancer: an autopsy study of 1,589 patients. Hum Pathol. 2000;31(5):578–83.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank all the patients and their relatives for participating in the studies comparing PET/CT with PET/MR. Furthermore, we thank the whole PET/CT and PET/MR team for their excellent technical assistance as well as the cyclotron team for the reliable tracer supply. The installation of PET/MR in our clinic was funded by the DFG (Deutsche Forschungsgemeinschaft, Grossgeräteinitiative).

Conflicts of interest

The Department of Nuclear Medicine, Technische Universität München, has established a research cooperation contract with Siemens Healthcare AG. The authors A. Beer and M. Schwaiger have received speaker honoraria from Siemens Healthcare. Apart from that there are no other conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Souvatzoglou.

Additional information

Michael Souvatzoglou and Matthias Eiber contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Souvatzoglou, M., Eiber, M., Martinez-Moeller, A. et al. PET/MR in prostate cancer: technical aspects and potential diagnostic value. Eur J Nucl Med Mol Imaging 40 (Suppl 1), 79–88 (2013). https://doi.org/10.1007/s00259-013-2445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-013-2445-4

Keywords

Navigation