Skip to main content
Log in

Postoperative und posttherapeutische Veränderungen nach primären Knochentumoren

Was ist wichtig für den Radiologen?

Postoperative and posttherapeutic changes after primary bone tumors

What’s important for radiologists?

  • Leitthema
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die posttherapeutische Bildgebung primärer Knochentumoren stellt eine diagnostische Herausforderung für jeden Radiologen dar. In Abhängigkeit vom primären Knochentumor werden zur Nachsorge die gängigen radiologischen Standardverfahren eingesetzt (Projektionsradiographie, Computertomographie [CT] und Magnetresonanztomographie [MRT]). Die Projektionsradiographie und CT haben einen besonderen Stellenwert v. a. bei benignen Knochentumoren sowie bei primär matrixbildenden Knochentumoren. Die MRT kommt vorzugsweise zur Rezidivdiagnostik bei malignen Knochentumoren und weichteilig rezidivierender Tumoren zum Einsatz. Knochenszintigraphische Verfahren sind vorteilhaft, wenn eine primär multifokale Manifestation der Knochentumorkrankheit vorliegt bzw. eine Metastasierung vermutet wird. Die molekulare Bildgebung (Fluordesoxyglucose-Positronenemissionstomographie [FDG-PET] bzw. ihre Hybridbildgebung in Kombination mit der CT) spielt eine zunehmende Bedeutung hinsichtlich des neoadjuvanten Therapiemonitorings und der Rezidivfrüherkennung. Die aktuelle Literatur führt für die molekularen Bildgebungstechniken (PET, PET-CT) Sensitivitäten und Spezifitäten bzgl. der Rezidiverkennung von bis zu 92 % bzw. 93 % an. Die diagnostische Genauigkeit wird mit bis zu 95 % angegeben, was sowohl diejenige des CT mit 67 % und jene der MRT mit 86 % deutlich übertrifft. In ähnlicher Weise trifft dies auch für die Beurteilung der neoadjuvanten Therapie zu, wobei hier die PET-basierten Verfahren mit Hilfe prätherapeutischer SUV-Werte („standard uptake value“) prognostisch verwertbare Aussagen machen können (v. a. für Ewing-Sarkome). Die modernen Bildgebungsverfahren haben ihren Fortschritt hinsichtlich Rezidivdiagnostik und der Einschätzung des Therapieansprechens valide und reproduzierbar unter Beweis gestellt.

Abstract

Posttreatment imaging of primary bone tumours represents a diagnostic challenge for radiologists. Depending on the primary bone tumour common radiological procedures, such as radiography, computed tomography (CT), and magnetic resonance imaging (MRI), are employed. Radiography and CT are particularly useful in benign bone tumours and in matrix-forming bone tumours. MRI comes into consideration with malignant tumour recurrence and tumoral soft tissue infiltration. Bone scintigraphy is of superior importance if a primarily multifocal manifestation of bone tumour or metastasizing tumour disease is suspected. Molecular imaging (FDG-PET and hybrid imaging, using CT) are gaining increasing importance in light of monitoring neoadjuvant chemotherapy and detecting recurrent tumour appearance. The current literature shows sensitivity and specificity values for recurrent detection of up to 92% and 93%. Diagnostic accuracy is as high as 95%, thus, exceeding accuracy values for CT (67%) and MRI (86%) by far. Likewise, this is also applicable for the assessment of the neoadjuvant chemotherapy. Moreover, PET-based modalities are able to establish prognostic statements using SUV-threshold values at baseline (especially for Ewing sarcomas). Advanced imaging techniques have made a great diagnostic step forward and have proven to be relevant and reproducible with respect to both relapse detection and treatment assessment. Furthermore, it is not clear whether a higher detection rate of early tumour recurrence will inevitably lead to better outcome and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13
Abb. 14
Abb. 15
Abb. 16
Abb. 17
Abb. 18
Abb. 19
Abb. 20

Literatur

  1. Fox MG, Trotta BM (2013) Osteosarcoma: review of the various types with emphasis on recent advancements in imaging. Semin Musculoskelet Radiol 17(2):123–136

    Article  PubMed  Google Scholar 

  2. Newman EN, Jones RL, Hawkins DS (2013) An evanluation of (18-F)-fluorodeoxy-D-glucose positron emission tomography, bone scan, and bone marrow aspiration/biopsy as staging investigations in Ewing sarcoma. Pediatr Blood Cancer 60(7):1113–1117

    Article  CAS  PubMed  Google Scholar 

  3. Bley TA, Wieben O, Uhl M (2009) Diffusion-weighted MR imaging in musculoskeletal radiology: applications in trauma, tumors, and inflammation. Magn Reson Imaging Clin N Am 17(2):263–275

    Article  PubMed  Google Scholar 

  4. Caracciolo JT, Letson GD (2016) Radiologic approach to bone and soft tissue sarcomas. Surg Clin North Am 96(5):963–976

    Article  PubMed  Google Scholar 

  5. Van der Woude HJ, Bloem JL, Hogendoorn PCW (1998) Preoperative evaluation and monitoring chemotherapy in patients with high-grade osteogenic and Ewing’s sarcoma: review of current imaging modalities. Skeletal Radiol 27(2):57–71

    Article  PubMed  Google Scholar 

  6. Gaston LL, Di Bella C, Slavin J et al (2011) 18F-FDG PET response to neoadjuvant chemotherapy for Ewing sarcoma and osteosarcoma are different. Skeletal Radiol 40(1):1007–1015

    Article  PubMed  Google Scholar 

  7. Mavrogenis AF, Pala E, Guerra G, Ruggieri P (2012) Post-radiation sarcomas. Clinical outcome of 52 patients. J Surg Oncol 105(6):570–576

    Article  PubMed  Google Scholar 

  8. Moore DD, Luu HH (2014) Osteosarcoma. Moore DD, Haydon RC: Ewing’s sarcoma of bone. Leddy LR, Holmes RE: Chondrosarcoma of bone. In: Peabody TD, Attar S (Hrsg) Orthopaedic oncology. Springer, Cham, Heidelberg, New York, Dordrecht, London, S 65–127

    Google Scholar 

  9. Picci P, Manfrini M, Fabbri N, Gambarotti M, Vanel D (Hrsg) (2014) Atlas of musculoskeletal tumors and tumorlike lesions. The Rizzoli Case Archive. (Chondrosarcoma, osteosarcoma, Ewing’s sarcoma). Springer, Switzerland, S 111–209

    Google Scholar 

  10. The ESMO/European Sarcoma Network Working Group: Bone sarcomas: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. (2014) Ann Oncol 25(Suppl 3):iii113–iii123

    Article  Google Scholar 

  11. Tan TJ, Aljefri AM, Clarkson PW, Masri BA, Ouellette HA, Munk PL, Mallinson PI (2015) Imaging of limb salvage surgery and pelvic reconstruction following resection of malignant bone tumours. Eur J Radiol 84(9):1782–1790

    Article  PubMed  Google Scholar 

  12. Shapeero LG, Poffyn B, De Visschere PJ, Sys G, Uyttendaele D, Vanel D, Forsynth R, Verstraete KL (2011) Complications of bone tumors after multimodal therapy. Eur J Radiol 77(1):51–67

    Article  CAS  PubMed  Google Scholar 

  13. Bielack S, Jürgens H, Jundt G et al (2009) Osteosarcoma: the COSS experience. Cancer Treat Res 152:289–308

    Article  PubMed  Google Scholar 

  14. Xiaojuan L, Ya Z, Shanshan W et al (2016) A comparative staudy between limb-salvage and amputation for traeting osteosarcoma. J Bone Oncol 5(1):15–21

    Article  Google Scholar 

  15. Hongtao L, Hui Z, Bingshun W et al (2012) 18F-FDG positron emission tomography for the assessment of histological response to neoadjuvant chemotherapy in osteosarcomas: a meta-analysis. Surg Oncol 21:e165–e170

    Article  PubMed  Google Scholar 

  16. Uhl M, Saueressig U, van Buiren M et al (2006) Osteosarcoma: preliminary results of in vivo assessment of tumor necrosis after chemotherapy with diffusion- and perfusion-weighted magnetic resonance imaging. Invest Radiol 41(8):618–623

    Article  CAS  PubMed  Google Scholar 

  17. Treglia G, Salsano M, Stefanelli A, Mattoli MV, Giordano A, Bonomo L (2012) Diagnostic accuracy of 18F-FDG-PET and PET-CT in patients with Ewing sarcoma family tumours: a systematic review and a meta-analysis. Skeletal Radiol 41(3):249–256

    Article  PubMed  Google Scholar 

  18. Brisse H, Ollivier L, Edeline V, Pacquement H, Michon J, Glorion C, Neuenschwander S (2004) Imaging of malignant tumours of the long bones in children: monitoring response in neoadjuvant chemotherapy and preoperative assessment. Pediatr Radiol 34(8):595–605

    Article  PubMed  Google Scholar 

  19. Dallaudiére B, Lecouvet F, Vande Berg B, Omoumi P, Perlepe V, Cerny M, Malghem J, Larbi A (2015) Diffusion-weighted MR imaging in musculoskeletal diseases: current concepts. Diagn Interv Imaging 96(4):327–340

    Article  PubMed  Google Scholar 

  20. Costelloe CM, Chuang HH, Madewell JE (2014) FDG PET/CT of primary bone tumors. AJR Am J Roentgenol 202(6):W521–W531

    Article  PubMed  Google Scholar 

  21. Dancheva Z, Bochev P, Chaushev B, Yordanova T, Klisarova A (2015) Dual-time point 18FDG-PET/CT imaging may be useful in assessing local recurrent disease in high grade bone and soft tissue sarcomas. Phys Med Biol 60(14):5471–5496

    Article  Google Scholar 

  22. Schuler MK, Platzek I, Beuthien-Baumann B, Fenchel M, Ehninger G, van den Hoff J (2015) (18)F-FDG PET/MRI for therapy response assessment in sarcoma: comparison of PET and MR imaging results. Clin Imaging 39(5):866–870

    Article  PubMed  Google Scholar 

  23. Sharma P, Khangembam BC, Suman KCS et al (2013) Diagnostic accuracy of 18F-FDG PET/CT for detecting recurrence in patients with primary skeletal Ewing sarcoma. Eur J Nucl Med Mol Imaging 40(7):1036–1043

    Article  CAS  PubMed  Google Scholar 

  24. Treglia G, Salsano M, Stefanelli A, Mattoli MV, Giordano A, Bonomo L (2012) Diagnostic accuracy of 18F-FDG-PET and PET/CT in patients with Ewing sarcoma family tumours: a systematic review and a meta-analysis. Skeletal Radiol 41(3):249–256

    Article  PubMed  Google Scholar 

  25. Subhawong TK, Wilky BA (2015) Value added: functional MR imaging in management of bone and soft tissue sarcomas. Curr Opin Oncol 27(4):323–331

    Article  CAS  PubMed  Google Scholar 

  26. Subhawong TK, Jacobs MA, Fayad LM (2014) Insights into quantitative diffusion-weighted MRI for musculoskeletal tumor imaging. AJR Am J Roentgenol 203:560–572

    Article  PubMed  Google Scholar 

  27. Bhojwani N, Szpakowski P, Partovi S et al (2015) Diffusion-weighted imaging in musculoskeletal radiology – clinical applications and future directions. Quant Imaging Med Surg 5(5):740–753

    PubMed  PubMed Central  Google Scholar 

  28. Hayashida Y, Yakushiji T, Awai K et al (2006) Monitoring therapeutic responses of primary bone tumors by diffusion-weighted image: initial results. Eur Radiol 16(12):2637–2643

    Article  PubMed  Google Scholar 

  29. Yao K, Troupis JM (2016) Diffusion-weighted imaging and the skeletal system: a literature review. Clin Radiol 71(11):1071–1082

    Article  CAS  PubMed  Google Scholar 

  30. Guo J, Reddick WE, Glass JO et al (2010) Dynamic contrast-enhanced magnetic resonance imaging as a prognostic factor in predicting event-free and overall survival in pediatric patients with osteosarcoma. Cancer 118(15):3776–3785

    Article  Google Scholar 

  31. Guo J, Reddick WE, Glass JO et al (2012) Dynamic contrast-enhanced magnetic resonance imaging as a prognostic factor in predicting event-free and overall survival in pediatric patients with osteosarcoma. Cancer 118(15):3776–3785

    Article  PubMed  Google Scholar 

  32. National Guidelines Clearinghouse. ACR Appropriateness Criteria® follow-up of malignant or aggressive musculoskeletal tumors. http://www.guideline.gov/content.aspx?id=32617. letzter Zugriff: 13.08.2017

  33. Griffiths HJ, Thompson RC, Nitke SJ, Olson PN, Thielen KR, Amundson P (1997) Use of MRI in evaluating postoperative changes in patients with bone and soft tissue tumors. Orthopedics 20(3):215–220

    CAS  PubMed  Google Scholar 

  34. Salzer-Kuntschik M, Delling G, Beron G, Sigmund R (1983) Morphological grades of regression in osteosarcoma after polychemotherapy - study COSS 80. J Cancer Res Clin Oncol 106(Supp):21–24

    Article  PubMed  Google Scholar 

  35. Salzer-Kuntschik M, Brand G, Delling G (1983) Bestimmung des morphologischen Regressionsgrades nach Chemotherapie bei malignen Knochentumoren. Pathologe 4(3):135–141

    CAS  PubMed  Google Scholar 

  36. Laux CJ, Berzaczy G, Weber M et al (2015) Tumour response of soteosarcoma to neoadjuvant chemotherapy evaluated by magnetic resonance imaging as prognostic factor for outcome. Int Orthop 39(1):97–105

    Article  PubMed  Google Scholar 

  37. Palmerini E, Colangeli M, Nanni C et al (2017) The role of FDG PET/CT in patients treated with neoadjuvant chemotherapy for localized bone sarcomas. Eur J Nucl Med Mol Imaging 44(2):215–223

    Article  CAS  PubMed  Google Scholar 

  38. Schramm N, Schlemmer M, Rist C, Issels R, Reiser MF, Berger F (2010) Kombonierte funktionelle und morphologische Bildgebung bei Sarkomen. Radiologe 50:339–348

    Article  CAS  PubMed  Google Scholar 

  39. Kager L, Tamamyan G, Bielack S (2017) Novel insigts and therapeutic interventions for pediatric osteosarcoma. Future Oncol 13(4):357–368

    Article  CAS  PubMed  Google Scholar 

  40. Bishop MW, Janeway KA, Gorlick R (2016) Future directions in the treantment of osteosarcoma. Curr Opin Pediatr 28(1):26–31

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. He JP, Hao Y, Li M, Wang J, Guo FJ (2014) Tumor-to-background ratio to predict response to chemotherapy of osteosarcoma better than standard uptake values. Orthop Surg 6(2):145–153

    Article  PubMed  Google Scholar 

  42. Kharuzhyk SA, Petrovskaya NA, Vosmitel MA (2010) Diffusion-weighted magnetic-resonance imaging in non-invasion monitoring of antiangiogenic therapy in experimental tumor model. Exp Oncol 32(2):104–106

    CAS  PubMed  Google Scholar 

  43. Bloem JL, van Rijswijk CSP (2017) Follow-up imaging of soft tissue tumors. In: Vanhoenacker FM et al (Hrsg) Imaging of soft tissue tumors. Springer, Cham, S 635–649

    Chapter  Google Scholar 

  44. Oka K, Yakushiji T, Sato H, Hirai T, Yamashita Y, Mizuta H (2010) The value of diffusion-weighted imaging for monitoring the chemotherapeutic response of osteosarcoma: a comparison between average apparent diffusion coefficient and minimum apparent diffusion coefficient. Skeletal Radiol 39(2):141–146

    Article  PubMed  Google Scholar 

  45. Reichardt W, Juettner E, Uhl M, Elverfeldt DV, Kontny U (2009) Diffusion-weighted imaging as predictor of therapy response in an animal model of Ewing sarcoma. Invest Radiol 44(5):298–303

    Article  PubMed  Google Scholar 

  46. Van der Woude HJ, Bloem JL, van Oostayen JA et al (1995) Treatment of high-grade bone sarcomas with neoadjuvant chemotherapy: the utility of sequential color Doppler sonography in predicting histopathologic response. AJR Am J Roentgenol 165:125–133

    Article  PubMed  Google Scholar 

  47. Baur A, Huber A, Arbogast S, Dürr HR, Zysk S, Wendtner C, Deimling M, Reiser M (2001) Diffusion-weighted imaging of tumor recurrencies and posttherapeutical soft-tissue changes in humans. Eur Radiol 11(5):628–633

    Google Scholar 

  48. Davies AM, Vanel D (1998) Follow-up of musculoskeletal tumors. I. Local recurrence. Eur J Radiol 8(5):791–799

    Article  CAS  Google Scholar 

  49. Eary JF, O’Sullivan F, Powitan Y et al (2002) Sarcoma tumor FDG uptake measured by PET and patient outcome: a retrospective analysis. Eur J Nucl Med Mol Imaging 29(9):1149–1154

    Article  CAS  PubMed  Google Scholar 

  50. Schramm N, Schlemmer M, Rist C, Issels R, Reiser MF, Berger F (2010) Combined functional and morphological imaging of sarcomas: significance for diagnostics and therapy monitoring. Radiologe 50(4):339–348

    Article  CAS  PubMed  Google Scholar 

  51. Panicek DM, Schwartz LH, Heelan RT, Caravelli JF (1995) Non-neoplastic causes of high signal intensity at T2-weighted MR imaging after treatment for musculoskeletal neoplasms. Skeletal Radiol 24(3):185–190

    Article  CAS  PubMed  Google Scholar 

  52. Jungmann PM, Ganter C, Schaeffeler CJ et al (2015) View-angle tilting and slice-encoding metal artifact correction in MRI: experimental sequence optimization for orthopaedic tumor endoprostheses and clinical application. PLOS ONE 10(4):e124922

    Article  PubMed  PubMed Central  Google Scholar 

  53. Bohndorf K, Anderson M, Davies M, Imhof H, Woertler K (Hrsg) (2016) Imaging of bones and joints. Thieme, Stuttgart, S 228–234

    Google Scholar 

  54. Moulopoulos LA, Koutoulidis V (2015) MRI of bone marrow posttreatment changes. In: Moulopoulos LA, Koutoulidis V (Hrsg) Bone marrow MRI: a pattern-based approach. Springer, Milano, Heidelberg, New York, Dordrecht, London, S 143–161

    Google Scholar 

  55. Lecouvet F, Omoumi A, Larbi B et al (2013) MRI for response assessment in oncologic bone marrow lesions. In: Baur-Melnyk A (Hrsg) Magnetic resonance imaging of the bone marrow, medical radiology. Diagnostic imaging. Springer, Berlin, S 121–139

    Chapter  Google Scholar 

  56. Pereira PL, Schick F, Einsele H, Farnsworth CT, Kollmansberger C, Mattke A, Duda SH, Claussen CD (1999) MR tomography of the bone marrow changes after high-dosage chemotherapy and autologous peripheral stem-cell transplantation. Rofo 170:251–257

    Article  CAS  PubMed  Google Scholar 

  57. Berman E, Nicolaides M, Maki RG, Fleisher M, Chanel S, Scheu K, Wilson BA, Heller G, Sauter NP (2006) Altered bone and mineral metabolism in patients receiving imatinib mesylate. N Engl J Med 354:2006–2013

    Article  CAS  PubMed  Google Scholar 

  58. Jobke B, Bloem H (2015) Bone Marrow: Chemotherapy. In: H‑U Kauczor, T Bäuerle (Hrsg) Imaging of complications and toxicity following tumor therapy. Springer, Heidelberg, New York, S 257–270

    Google Scholar 

  59. Panotopoulos J, Funovics PT, Windhager R (2017) Allgemeine diagnostische Grundlagen bei benignen Tumoren des Bewegungsapparates. Orthopäde 46:473–476

    Article  CAS  PubMed  Google Scholar 

  60. Roesenthal DI, Hornicek FJ, Wolfe MW, Jennings LC, Gebhardt MC, Mankin HJ (1998) Percutaneous radiofrequency coagulation of osteoid osteoma compared with operative treatment. J Bone Joint Surg Am 80(6):815–821

    Article  Google Scholar 

  61. von Borstel D, Taguibao RA, Strle NA, Burns JE (2017) Giant cell tumor oft he bone: aggressive case initially treated with denosumab and intralesional surgery. Skeletal Radiol 46:571–578

    Article  Google Scholar 

  62. Zhang Y, Ilslan H, Bauer TW (2017) Giant cell tumor of bone: imaging and histology changes after denosumab treatment. A comment. Skeletal Radiol 46:961–962

    Article  PubMed  Google Scholar 

  63. Freyschmidt J (2010) Osteosarkome unter Chemotherapie. Langerhans-Zell-Histiozytose (LZH). In: Freyschmidt J, Ostertag H, Jundt G (Hrsg) Knochentumoren mit Kiefertumoren, 3. Aufl. Springer, Berlin, S 255–865

    Chapter  Google Scholar 

  64. Zaveri J, La Q, Yarmish G, Neuman J (2014) More than just Langerhans Cell Histiocytosis: a radiologic review of histiocytotic disorders. RadioGraphic 34:2008–2024

    Article  Google Scholar 

  65. Abla O, Egeler RM, Weitzman S (2010) Langerhans cell histiocytosis: current concepts and treatmants. Cancer Treat Rev 36(4):354–359

    Article  CAS  PubMed  Google Scholar 

  66. Mueller WP, Melzer HI, Schmid I, Coppenrath E, Bartenstein P, Pfluger T (2013) The diagnostic value of 18F-FDG PET and MRI in paediatric histiocytosis. Eur J Nucl Med Mol Imaging 40(3):356–363

    Article  PubMed  Google Scholar 

  67. Becker M, Stefanelli S, Rougemont A‑L, Poletti PA, Merlini L (2017) Non-odontogenic tumors oft he facial bones in children and adolescents: role of multiparametric imaging. Neuroradiology 59(4):327–342

    Article  PubMed  PubMed Central  Google Scholar 

  68. Campanacci L (2014) Osteoid osteoma. Osteoblastoma. Aneursmal bone cyst. Manfrini M: Giant cell tumor. Ferraro A: Chondroblastoma. In: Picci P et al (Hrsg) Atlas of musculoskeletal tumors and tumorlike lesions. Springer, Cham, Heidelberg, Dordrecht, London, New York, S 75–102

    Chapter  Google Scholar 

  69. Lee FY, Yu J, Chang SS, Fawwaz R, Parisien MV (2004) Diagnostic value and limitations of fluorine-18 fluorodeoxyglucose positron emission tomography for cartilaginous tumors of bone. J Bone Joint Surg Am 86-A(12):2677–2685

    Article  PubMed  Google Scholar 

  70. Herget GW, Strohm P, Rottenburger C, Kontny U, Krauss T, Bohm J, Sudkamp N, Uhl M (2014) Insights into enchondroma, enchondromatosis and the risk of secondary chondrosarcoma. Review oft he literature with an emphysis on the clinical behaviour, radilogy, malignant transformation and the follow-up. Neoplasma 61(4):365–378

    Article  CAS  PubMed  Google Scholar 

  71. Choi BB, Jee WH, Sunwood HJ, Cho JH, Kim JY et al (2013) MR differentiation of low-grade chondrosarcoma from enchondroma. Clin Imaging 37:542–547

    Article  PubMed  Google Scholar 

  72. Zhao JG, Wang J, Huang WJ, Zhang P, Ding N, Shang J (2017) Interventions of treating simple bone cysts in the long bones of children. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD010847

    Google Scholar 

  73. Park HY, Yang SK, Sheppard WL, Hegde V, Zoller SD, Nelson SD, Federman N, Bernthal NM (2016) Current management of aneurysmal bone cysts. Curr Rev Musculoskelet Med 9(4):435–444

    Article  PubMed  PubMed Central  Google Scholar 

  74. Tsoumakidou G, Koch G, Caudrelier J, Garnon J, Cazzato RL, Edalat F, Gangi A (2016) Image-guided spinal ablation: a review. Cardiovasc Intervent Radiol 39(9):1229–1238

    Article  PubMed  Google Scholar 

  75. Rehnitz C, Sprengel SD, Lehner B et al (2012) CT-guided radiofrequency ablation of osteoid osteoma and osteoblastoma: clinical success and long-term follow-up in 77 patients. Eur J Radiol 81(11):3426–3434

    Article  PubMed  Google Scholar 

  76. Woertler K, Vestring T, Boettner F et al (2001) Osteoid osteoma: CT-guided percutaneous radiofrequency ablation and follow-up in 47 patients. J Vasc Interv Radiol 12(6):717–722

    Article  CAS  PubMed  Google Scholar 

  77. Lanza E, Thouvenin Y, Viala P et al (2014) Osteoid osteoma treated by percutaneous thermal ablation: when do we fail? A systematic review and guidelines for future reporting. Cardiovasc Intervent Radiol 37(6):1530–1539

    Article  PubMed  Google Scholar 

  78. Rheinheimer S, Görlach J, Figiel J, Mahnken AH (2016) Diffusion-weigthed MRI of osteoid-osteomas: higher ADC values after radiofrequency ablation. Eur J Radiol 85(7):1284–1288

    Article  CAS  PubMed  Google Scholar 

  79. Leong LT, Ming BJ (2015) Craniofacial fibrous dysplasia involving the orbit: a case report and literature review. Asia Pac J Ophthalmol (Phila) 4(3):151–154

    Article  Google Scholar 

  80. Bowers CA, Taussky P, Couldwell WT (2014) Surgical treatment of craniofacial fibrous dysplasia in adults. Neurosurg Rev 37(1):47–53

    Article  PubMed  Google Scholar 

  81. Florez H, Peris P, Guañabens N (2016) Fibrous dysplasia. Clinical review and therapeutic management. Med Clin (Barc) 147(12):547–553

    Article  Google Scholar 

  82. Chapurlat RD (2006) Medical therapy in adults with fibrous dysplasia of bone. J Bone Miner Res 21(Suppl 2):P114–P119

    Article  CAS  PubMed  Google Scholar 

  83. Chapurlat RD, Gensburger D, Jimenez-Andrade JM et al (2012) Pathophysiology and medical treatment of pain in fibrous dysplasia of bone. Orphanet J Rare Dis 7(Suppl 1):S3

    Article  PubMed  PubMed Central  Google Scholar 

  84. Bloem JL, Reidsma II (2012) Bone and soft tissue tumors of hip and pelvis. Eur J Radiol 81:3793–3801

    Article  PubMed  Google Scholar 

  85. Dobre MC, Fischbein N (2014) “Do not touch” lesions oft he skull base. Radiology-Pictorial essay. J Med Imaging Radiat Oncol 58:458–463

    PubMed  Google Scholar 

  86. Postovysky S, Barzilai M, Meller I, Kollander Y, Futerman B, Ben Arush MW (2008) Does regular follow-up influence the survival of patients with sarcoma after recurrence? The Miri Shitrit pediatric oncology department experience. J Pediatr Hematol Oncol 30(3):189–195

    Article  Google Scholar 

Download references

Danksagung

Die Autoren danken Frau Professor Dr. A. Baur-Melnyk, LMU München, für ihre kritische Durchsicht des Manuskriptes. Ebenso danken die Autoren den Anregungen zum Beitrag durch Herrn Dr. B. Jobke, San Francisco. Abb. 45789 und 16: Danksagung an Frau PD Dr. Nöbauer-Huhmann, Wien; Abb. 6: Danksagung an Radiol. Univ.-Klinik, LMU, München; Abb. 13a–f: Danksagung an Prof. Dr. G. Schulte-Altedorneburg, München-Harlaching; Abb. 15: Danksagung an Hessing-Klinik Augsburg.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Grieser.

Ethics declarations

Interessenkonflikt

T. Grieser und I.-M. Nöbauer-Huhmann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grieser, T., Nöbauer-Huhmann, IM. Postoperative und posttherapeutische Veränderungen nach primären Knochentumoren. Radiologe 57, 938–957 (2017). https://doi.org/10.1007/s00117-017-0304-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-017-0304-1

Schlüsselwörter

Keywords

Navigation