Skip to main content

Advertisement

Log in

Imaging of malignant tumours of the long bones in children: monitoring response to neoadjuvant chemotherapy and preoperative assessment

  • Review
  • Published:
Pediatric Radiology Aims and scope Submit manuscript

Abstract

This review focuses on imaging of osteosarcoma and Ewing’s sarcoma of the long bones in children during preoperative neoadjuvant chemotherapy. Morphological criteria on plain films and conventional static MRI are insufficiently correlated with histological response. We review the contribution of dynamic MRI, diffusion-weighted MR and nuclear medicine (18FDG-PET) to monitor tumoural necrosis. MRI is currently the best method to evaluate local extension prior to tumour resection, especially to assess the feasibility of conservative surgery. Quantitative models in dynamic MRI and 18FDG-PET are currently being developed in order to find new early prognostic criteria, but for the time being, treatment protocols are still based on the gold standard of histological response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–d
Fig. 2a–l
Fig. 3
Fig. 4a–e

Similar content being viewed by others

References

  1. Jurgens H, Exner U, Gadner H, et al (1988) Multidisciplinary treatment of primary Ewing’s sarcoma of bone. A 6-year experience of a European cooperative trial. Cancer 61:23–32

    PubMed  Google Scholar 

  2. Petrilli AS, Gentil FC, Epelman S, et al (1991) Increased survival, limb preservation, and prognostic factors for osteosarcoma. Cancer 68:733–737

    CAS  PubMed  Google Scholar 

  3. Bacci G, Ferrari S, Longhi A, et al (2001) Pattern of relapse in patients with osteosarcoma of the extremities treated with neoadjuvant chemotherapy. Eur J Cancer 37:32–38

    Article  CAS  PubMed  Google Scholar 

  4. Gentet JC, Brunat-Mentigny M, Demaille MC, et al (1997) Ifosfamide and etoposide in childhood osteosarcoma. A phase II study of the French Society of Paediatric Oncology. Eur J Cancer 33:232–237

    Article  CAS  PubMed  Google Scholar 

  5. Dubousset J, Missenard G, Kalifa C (1991) Management of osteogenic sarcoma in children and adolescents. Clin Orthop 270:52–59

    Google Scholar 

  6. Huvos AG, Rosen G, Marcove RC (1977) Primary osteogenic sarcoma: pathologic aspects in 20 patients after treatment with chemotherapy en bloc resection, and prosthetic bone replacement. Arch Pathol Lab Med 101:14–18

    CAS  PubMed  Google Scholar 

  7. Rosen G, Caparros B, Huvos AG, et al (1982) Preoperative chemotherapy for osteogenic sarcoma: selection of postoperative adjuvant chemotherapy based on the response of the primary tumor to preoperative chemotherapy. Cancer 49:1221–1230

    CAS  PubMed  Google Scholar 

  8. Hudson M, Jaffe MR, Jaffe N, et al (1990) Pediatric osteosarcoma: therapeutic strategies, results, and prognostic factors derived from a 10-year experience. J Clin Oncol 8:1988–1997

    CAS  PubMed  Google Scholar 

  9. Picci P, Bohling T, Bacci G, et al (1997) Chemotherapy-induced tumor necrosis as a prognostic factor in localized Ewing’s sarcoma of the extremities. J Clin Oncol 15:1553–1559

    CAS  PubMed  Google Scholar 

  10. Picci P, Rougraff BT, Bacci G, et al (1993) Prognostic significance of histopathologic response to chemotherapy in nonmetastatic Ewing’s sarcoma of the extremities. J Clin Oncol 11:1763–1769

    CAS  PubMed  Google Scholar 

  11. Le Deley MC, Ahrens S, Paulussen M, et al (2001) Histological response is the main prognostic factor of survival in localised Ewing tumour treated with chemotherapy alone before surgery (abstract). In: International Society of Paediatric Oncology XXXIII Meeting and International Society of Paediatric Surgical Oncology XXXIII Meeting. Brisbane, 10–13 October 2001. Med Pediatr Oncol 37:178

    Google Scholar 

  12. Miller SL, Hoffer FA, Reddick WE, et al (2001) Tumor volume or dynamic contrast-enhanced MRI for prediction of clinical outcome of Ewing sarcoma family of tumors. Pediatr Radiol 31:518–523

    Article  CAS  PubMed  Google Scholar 

  13. Oberlin O, Deley MC, Bui BN, et al (2001) Prognostic factors in localized Ewing’s tumours and peripheral neuroectodermal tumours: the third study of the French Society of Paediatric Oncology (EW88 study). Br J Cancer 85:1646–1654

    Article  CAS  PubMed  Google Scholar 

  14. Bieling P, Rehan N, Winkler P, et al (1996) Tumor size and prognosis in aggressively treated osteosarcoma. J Clin Oncol 14:848–858

    CAS  PubMed  Google Scholar 

  15. Ferrari S, Bertoni F, Mercuri M, et al (2001) Predictive factors of disease-free survival for non-metastatic osteosarcoma of the extremity: an analysis of 300 patients treated at the Rizzoli Institute. Ann Oncol 12:1145–1150

    Google Scholar 

  16. Schleiermacher G, Peter M, Oberlin O, et al (2003) Increased risk of systemic relapses associated with bone marrow micrometastasis and circulating tumor cells in localized Ewing tumor. J Clin Oncol 21:85–91

    Article  PubMed  Google Scholar 

  17. Manaster BJ, Dalinka MK, Alazraki N, et al (2000) Follow-up examinations for bone tumors, soft tissue tumors, and suspected metastasis post therapy. American College of Radiology. ACR Appropriateness Criteria. Radiology 215[Suppl]:379–387

    PubMed  Google Scholar 

  18. Panicek DM, Gatsonis C, Rosenthal DI, et al (1997) CT and MR imaging in the local staging of primary malignant musculoskeletal neoplasms: report of the Radiology Diagnostic Oncology Group. Radiology 202:237–246

    CAS  PubMed  Google Scholar 

  19. Bloem JL, Taminiau AH, Eulderink F, et al (1988) Radiologic staging of primary bone sarcoma: MR imaging, scintigraphy, angiography, and CT correlated with pathologic examination. Radiology 169:805–810

    PubMed  Google Scholar 

  20. Fletcher BD (1991) Response of osteosarcoma and Ewing sarcoma to chemotherapy: imaging evaluation. AJR 157:825–833

    CAS  Google Scholar 

  21. Fédération Nationale des Centres de Lutte contre le Cancer (FNCLCC) (1997) Standards Options et Recommandations pour le diagnostic, la surveillance et le traitement de l‘Ostéosarcome. John Libbey Eurotext, Montrouge

  22. Leung JC, Dalinka MK (2000) Magnetic resonance imaging in primary bone tumors. Semin Roentgenol 35:297–305

    CAS  PubMed  Google Scholar 

  23. Anderson MW, Temple HT, Dussault RG, et al (1999) Compartmental anatomy: relevance to staging and biopsy of musculoskeletal tumors. AJR 173:1663–1671

    CAS  Google Scholar 

  24. Dwyer AJ, Frank JA, Sank VJ, et al (1988) Short-TI inversion-recovery pulse sequence: analysis and initial experience in cancer imaging. Radiology 168:827–836

    CAS  PubMed  Google Scholar 

  25. Shuman WP, Patten RM, Baron RL, et al (1991) Comparison of STIR and spin-echo MR imaging at 1.5 T in 45 suspected extremity tumors: lesion conspicuity and extent. Radiology 179:247–252

    CAS  PubMed  Google Scholar 

  26. Mirowitz SA, Apicella P, Reinus WR, et al (1994) MR imaging of bone marrow lesions: relative conspicuousness on T1-weighted, fat-suppressed T2-weighted, and STIR images. AJR 162:215–221

    PubMed  Google Scholar 

  27. Verstraete KL, Lang P (2000) Bone and soft tissue tumors: the role of contrast agents for MR imaging. Eur J Radiol 34:229–246

    CAS  PubMed  Google Scholar 

  28. Gronemeyer SA, Kauffman WM, Rocha MS, et al (1997) Fat-saturated contrast-enhanced T1-weighted MRI in evaluation of osteosarcoma and Ewing sarcoma. J Magn Reson Imaging 7:585–589

    PubMed  Google Scholar 

  29. Seeger LL, Widoff BE, Bassett LW, et al (1991) Preoperative evaluation of osteosarcoma: value of gadopentetate dimeglumine-enhanced MR imaging. AJR 157:347–351

    PubMed  Google Scholar 

  30. de Baere T, Vanel D, Shapeero LG, et al (1992) Osteosarcoma after chemotherapy: evaluation with contrast material-enhanced subtraction MR imaging. Radiology 185:587–592

    PubMed  Google Scholar 

  31. Swan JS, Grist TM, Sproat IA, et al (1995) Musculoskeletal neoplasms: preoperative evaluation with MR angiography. Radiology 194:519–524

    CAS  PubMed  Google Scholar 

  32. Lang P, Grampp S, Vahlensieck M, et al (1995) Primary bone tumors: value of MR angiography for preoperative planning and monitoring response to chemotherapy. AJR 165:135–142

    CAS  Google Scholar 

  33. Smith J, Heelan RT, Huvos AG, et al (1982) Radiographic changes in primary osteogenic sarcoma following intensive chemotherapy. Radiological–pathological correlation in 63 patients. Radiology 143:355–360

    CAS  PubMed  Google Scholar 

  34. Ehara S, Kattapuram SV, Egglin TK (1991) Ewing’s sarcoma. Radiographic pattern of healing and bony complications in patients with long-term survival. Cancer 68:1531–1535

    CAS  PubMed  Google Scholar 

  35. Lawrence JA, Babyn PS, Chan HS, et al (1993) Extremity osteosarcoma in childhood: prognostic value of radiologic imaging. Radiology 189:43–47

    CAS  PubMed  Google Scholar 

  36. Holscher HC, Hermans J, Nooy MA, et al (1996) Can conventional radiographs be used to monitor the effect of neoadjuvant chemotherapy in patients with osteogenic sarcoma? Skeletal Radiol 25:19–24

    Article  CAS  PubMed  Google Scholar 

  37. Pan G, Raymond AK, Carrasco CH, et al (1990) Osteosarcoma: MR imaging after preoperative chemotherapy. Radiology 174:517–526

    CAS  PubMed  Google Scholar 

  38. Holscher HC, Bloem JL, Nooy MA, et al (1990) The value of MR imaging in monitoring the effect of chemotherapy on bone sarcomas. AJR 154:763–769

    CAS  Google Scholar 

  39. Lemmi MA, Fletcher BD, Marina NM, et al (1990) Use of MR imaging to assess results of chemotherapy for Ewing sarcoma. AJR 155:343–346

    CAS  Google Scholar 

  40. MacVicar AD, Olliff JF, Pringle J, et al (1992) Ewing sarcoma: MR imaging of chemotherapy-induced changes with histologic correlation. Radiology 184:859–864

    CAS  PubMed  Google Scholar 

  41. Holscher HC, Bloem JL, Vanel D, et al (1992) Osteosarcoma: chemotherapy-induced changes at MR imaging. Radiology 182:839–844

    CAS  PubMed  Google Scholar 

  42. Onikul E, Fletcher BD, Parham DM, et al (1996) Accuracy of MR imaging for estimating intraosseous extent of osteosarcoma. AJR 167:1211–1215

    PubMed  Google Scholar 

  43. van der Woude HJ, Bloem JL, Hogendoorn PC (1998) Preoperative evaluation and monitoring chemotherapy in patients with high-grade osteogenic and Ewing’s sarcoma: review of current imaging modalities. Skeletal Radiol 27:57–71

    PubMed  Google Scholar 

  44. Abudu A, Davies AM, Pynsent PB, et al (1999) Tumour volume as a predictor of necrosis after chemotherapy in Ewing’s sarcoma. J Bone Joint Surg Br 81:317–322

    Article  CAS  PubMed  Google Scholar 

  45. van der Woude HJ, Bloem JL, Holscher HC, et al (1994) Monitoring the effect of chemotherapy in Ewing’s sarcoma of bone with MR imaging. Skeletal Radiol 23:493–500

    PubMed  Google Scholar 

  46. Reddick WE, Bhargava R, Taylor JS, et al (1995) Dynamic contrast-enhanced MR imaging evaluation of osteosarcoma response to neoadjuvant chemotherapy. J Magn Reson Imaging 5:689–694

    CAS  PubMed  Google Scholar 

  47. Verstraete KL, Van der Woude HJ, Hogendoorn PC, et al (1996) Dynamic contrast-enhanced MR imaging of musculoskeletal tumors: basic principles and clinical applications. J Magn Reson Imaging 6:311–321

    CAS  PubMed  Google Scholar 

  48. van der Woude HJ, Verstraete KL, Hogendoorn PC, et al (1998) Musculoskeletal tumors: does fast dynamic contrast-enhanced subtraction MR imaging contribute to the characterization? Radiology 208:821–828

    PubMed  Google Scholar 

  49. Reddick WE, Taylor JS, Fletcher BD (1999) Dynamic MR imaging (DEMRI) of microcirculation in bone sarcoma. J Magn Reson Imaging 10:277–285

    Article  CAS  PubMed  Google Scholar 

  50. Lang P, Honda G, Roberts T, et al (1995) Musculoskeletal neoplasm: perineoplastic edema versus tumor on dynamic postcontrast MR images with spatial mapping of instantaneous enhancement rates. Radiology 197:831–839

    PubMed  Google Scholar 

  51. van der Woude HJ, Bloem JL, Verstraete KL, et al (1995) Osteosarcoma and Ewing’s sarcoma after neoadjuvant chemotherapy: value of dynamic MR imaging in detecting viable tumor before surgery. AJR 165:593–598

    Google Scholar 

  52. Erlemann R, Reiser MF, Peters PE, et al (1989) Musculoskeletal neoplasms: static and dynamic Gd-DTPA-enhanced MR imaging. Radiology 171:767–773

    PubMed  Google Scholar 

  53. Dyke JP, Panicek DM, Healey JH, et al (2003) Osteogenic and Ewing sarcomas: estimation of necrotic fraction during induction chemotherapy with dynamic contrast-enhanced MR imaging. Radiology 228:271–278

    PubMed  Google Scholar 

  54. Egmont-Petersen M, Hogendoorn PC, van der Geest RJ, et al (2000) Detection of areas with viable remnant tumor in postchemotherapy patients with Ewing’s sarcoma by dynamic contrast-enhanced MRI using pharmacokinetic modelling. Magn Reson Imaging 18:525–535

    Article  CAS  PubMed  Google Scholar 

  55. Reddick WE, Wang S, Xiong X, et al (2001) Dynamic magnetic resonance imaging of regional contrast access as an additional prognostic factor in pediatric osteosarcoma. Cancer 91:2230–2237

    Article  CAS  PubMed  Google Scholar 

  56. Ongolo-Zogo P, Thiesse P, Sau J, et al (1999) Assessment of osteosarcoma response to neoadjuvant chemotherapy: comparative usefulness of dynamic gadolinium-enhanced spin-echo magnetic resonance imaging and technetium-99 m skeletal angioscintigraphy. Eur Radiol 9:907–914

    Article  CAS  PubMed  Google Scholar 

  57. Baur A, Stabler A, Bruning R, et al (1998) Diffusion-weighted MR imaging of bone marrow: differentiation of benign versus pathologic compression fractures. Radiology 207:349–356

    CAS  PubMed  Google Scholar 

  58. Lang P, Wendland MF, Saeed M, et al (1998) Osteogenic sarcoma: noninvasive in vivo assessment of tumor necrosis with diffusion-weighted MR imaging. Radiology 206:227–235

    CAS  PubMed  Google Scholar 

  59. Zhou XJ, Leeds NE, McKinnon GC, et al (2002) Characterization of benign and metastatic vertebral compression fractures with quantitative diffusion MR imaging. AJNR 23:165–170

    Google Scholar 

  60. Edeline V, Frouin F, Bazin JP, et al (1993) Factor analysis as a means of determining response to chemotherapy in patients with osteogenic sarcoma. Eur J Nucl Med 20:1175–1185

    CAS  PubMed  Google Scholar 

  61. van der Woude HJ, Bloem JL, Schipper J, et al (1994) Changes in tumor perfusion induced by chemotherapy in bone sarcomas: color Doppler flow imaging compared with contrast-enhanced MR imaging and three-phase bone scintigraphy. Radiology 191:421–431

    PubMed  Google Scholar 

  62. Provisor AJ, Ettinger LJ, Nachman JB, et al (1997) Treatment of nonmetastatic osteosarcoma of the extremity with preoperative and postoperative chemotherapy: a report from the Children’s Cancer Group. J Clin Oncol 15:76–84

    CAS  PubMed  Google Scholar 

  63. Schulte M, Brecht-Krauss D, Werner M, et al (1999) Evaluation of neoadjuvant therapy response of osteogenic sarcoma using FDG PET. J Nucl Med 40:1637–1643

    CAS  PubMed  Google Scholar 

  64. Franzius C, Sciuk J, Brinkschmidt C, et al (2000) Evaluation of chemotherapy response in primary bone tumors with F-18 FDG positron emission tomography compared with histologically assessed tumor necrosis. Clin Nucl Med 25:874–881

    Google Scholar 

  65. Hawkins DS, Rajendran JG, Conrad EU III, et al (2002) Evaluation of chemotherapy response in pediatric bone sarcomas by [F-18]-fluorodeoxy-D-glucose positron emission tomography. Cancer 94:3277–3284

    Google Scholar 

  66. Franzius C, Bielack S, Flege S, et al (2002) Prognostic significance of (18)F-FDG and (99m)Tc-methylene diphosphonate uptake in primary osteosarcoma. J Nucl Med 43:1012–1017

    CAS  PubMed  Google Scholar 

  67. van der Woude HJ, Bloem JL, van Oostayen JA, et al (1995) Treatment of high-grade bone sarcomas with neoadjuvant chemotherapy: the utility of sequential color Doppler sonography in predicting histopathologic response. AJR 165:125–133

    Google Scholar 

  68. Gillespy T III, Manfrini M, Ruggieri P, et al (1988) Staging of intraosseous extent of osteosarcoma: correlation of preoperative CT and MR imaging with pathologic macroslides. Radiology 167:765–767

    PubMed  Google Scholar 

  69. Fletcher BD, Wall JE, Hanna SL (1993) Effect of hematopoietic growth factors on MR images of bone marrow in children undergoing chemotherapy. Radiology 189:745–751

    CAS  PubMed  Google Scholar 

  70. Ryan SP, Weinberger E, White KS, et al (1995) MR imaging of bone marrow in children with osteosarcoma: effect of granulocyte colony-stimulating factor. AJR 165:915–920

    PubMed  Google Scholar 

  71. Fletcher BD (1997) Effects of pediatric cancer therapy on the musculoskeletal system. Pediatr Radiol 27:623–636

    Article  CAS  PubMed  Google Scholar 

  72. Itoh K, Kanegae K, Kato C (1995) Increased symmetric bone uptake during treatment with granulocyte colony stimulating factor and erythropoietin. Clin Nucl Med 20:932–933

    CAS  PubMed  Google Scholar 

  73. Hollinger EF, Alibazoglu H, Ali A, et al (1998) Hematopoietic cytokine-mediated FDG uptake simulates the appearance of diffuse metastatic disease on whole-body PET imaging. Clin Nucl Med 23:93–98

    Article  CAS  PubMed  Google Scholar 

  74. Davies AM, Makwana NK, Grimer RJ, et al (1997) Skip metastases in Ewing’s sarcoma: a report of three cases. Skeletal Radiol 26:379–384

    Article  CAS  PubMed  Google Scholar 

  75. Saifuddin A, Twinn P, Emanuel R, et al (2000) An audit of MRI for bone and soft-tissue tumours performed at referral centres. Clin Radiol 55:537–541

    PubMed  Google Scholar 

  76. Moore SG, Dawson KL (1990) Red and yellow marrow in the femur: age-related changes in appearance at MR imaging. Radiology 175:219–223

    CAS  PubMed  Google Scholar 

  77. Enneking WF, Kagan A II (1978) Transepiphyseal extension of osteosarcoma: incidence, mechanism, and implications. Cancer 41:1526–1537

    PubMed  Google Scholar 

  78. Simon MA, Bos GD (1980) Epiphyseal extension of metaphyseal osteosarcoma in skeletally immature individuals. J Bone Joint Surg Am 62:195–204

    PubMed  Google Scholar 

  79. Norton KI, Hermann G, Abdelwahab IF, et al (1991) Epiphyseal involvement in osteosarcoma. Radiology 180:813–816

    PubMed  Google Scholar 

  80. Hoffer FA, Nikanorov AY, Reddick WE, et al (2000) Accuracy of MR imaging for detecting epiphyseal extension of osteosarcoma. Pediatr Radiol 30:289–298

    Article  PubMed  Google Scholar 

  81. San-Julian M, Aquerreta JD, Benito A, et al (1999) Indications for epiphyseal preservation in metaphyseal malignant bone tumors of children: relationship between image methods and histological findings. J Pediatr Orthop 19:543–548

    Article  CAS  PubMed  Google Scholar 

  82. Panuel M, Gentet JC, Scheiner C, et al (1993) Physeal and epiphyseal extent of primary malignant bone tumors in childhood. Correlation of preoperative MRI and the pathologic examination. Pediatr Radiol 23:421–424

    PubMed  Google Scholar 

  83. Schima W, Amann G, Stiglbauer R, et al (1994) Preoperative staging of osteosarcoma: efficacy of MR imaging in detecting joint involvement. AJR 163:1171–1175

    PubMed  Google Scholar 

  84. Beltran J, Simon DC, Katz W, et al (1987) Increased MR signal intensity in skeletal muscle adjacent to malignant tumors: pathologic correlation and clinical relevance. Radiology 162:251–255

    PubMed  Google Scholar 

  85. van Trommel MF, Kroon HM, Bloem JL, et al (1997) MR imaging based strategies in limb salvage surgery for osteosarcoma of the distal femur. Skeletal Radiol 26:636–641

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hervé Brisse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brisse, H., Ollivier, L., Edeline, V. et al. Imaging of malignant tumours of the long bones in children: monitoring response to neoadjuvant chemotherapy and preoperative assessment. Pediatr Radiol 34, 595–605 (2004). https://doi.org/10.1007/s00247-004-1192-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00247-004-1192-x

Keywords

Navigation