Skip to main content
Log in

Morphologische und funktionelle Knorpeldiagnostik

Morphological and functional cartilage imaging

  • CME Zertifizierte Fortbildung
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Heutzutage ist eine exzellente morphologische Knorpelbildgebung möglich, die auch feinste Knorpelpathologien darstellen kann. Neben den Standard-2-D-Sequenzen ist eine Vielzahl von 3-D-Sequenzen zur hochaufgelösten Knorpeldarstellung verfügbar. Im ersten Teil dieses Artikels werden daher die aktuellen Möglichkeiten der morphologischen Diagnostik beleuchtet. Der zweite Teil behandelt die funktionelle Knorpelbildgebung. Mit ihr ist es möglich, Veränderungen der Knorpelkomposition und somit Frühformen von Knorpelschädigungen zu erfassen bzw. diese biochemischen Veränderungen nach therapeutischer Intervention zu evaluieren. Hierbei werden bereits validierte Techniken wie dGEMRIC oder „T2-Mapping“ besprochen, aber auch neueste Techniken wie die gagCEST-Technik beleuchtet.

Abstract

Excellent morphological imaging of cartilage is now possible and allows the detection of subtle cartilage pathologies. Besides the standard 2D sequences, a multitude of 3D sequences are available for high-resolution cartilage imaging. The first part therefore deals with modern possibilities of morphological imaging. The second part deals with functional cartilage imaging with which it is possible to detect changes in cartilage composition and thus early osteoarthritis as well as to monitor biochemical changes after therapeutic interventions. Validated techniques such as delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and T2 mapping as well the latest techniques, such as the glycosaminoglycan chemical exchange-dependent saturation transfer (gagCEST) technique will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7
Abb. 8
Abb. 9
Abb. 10
Abb. 11
Abb. 12
Abb. 13

Literatur

  1. Robert Koch-Institut (Hrsg) (2013) Arthrose. Gesundheitsberichterstattung des Bundes, Heft 54. RKI, Berlin

  2. Roemer FW, Crema MD, Trattnig S, Guermazi A (2011) Advances in imaging of osteoarthritis and cartilage. Radiology 260:332–335

    Article  PubMed  Google Scholar 

  3. Kellgren JH, Lawrence JS (1957) Radiological assessment of osteo-arthrosis. Ann Rheum Dis 16:494–502

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Amin S, LaValley MP, Guermazi A et al (2005) The relationship between cartilage loss on magnetic resonance imaging and radiographic progression in men and women with knee osteoarthritis. Arthritis Rheum 52:3152–3159

    Article  PubMed  Google Scholar 

  5. Lecouvet FE, Simoni P, Koutaïssoff S et al (2008) Multidetector spiral CT arthrography of the shoulder. Clinical applications and limits, with MR arthrography and arthroscopic correlations. Eur J Radiol 68:120–136

    Article  PubMed  Google Scholar 

  6. Lecouvet FE, Dorzée B, Dubuc JE et al (2007) Cartilage lesions of the glenohumeral joint: diagnostic effectiveness of multidetector spiral CT arthrography and comparison with arthroscopy. Eur Radiol 17:1763–1771

    Article  PubMed  Google Scholar 

  7. Rizzo C, Ceccarelli F, Gattamelata A et al (2013) Ultrasound in rheumatoid arthritis. Med Ultrason 15:199–208

    Article  PubMed  Google Scholar 

  8. Jacobson JA (2007) Fundamentals of Musculoskeletal Ultrasound. Saunders Elsevier, Philadelphia, pp 152–155

  9. Chan WP, Lang P, Stevens MP et al (1991) Osteoarthritis of the knee: comparison of radiography, CT, and MR imaging to assess extent and severity. AJR Am J Roentgenol 157:799–806

    Article  CAS  PubMed  Google Scholar 

  10. Rogers AD, Payne JE, Yu JS (2013) Cartilage imaging: a review of current concepts and emerging technologies. Semin Roentgenol 48:148–157

    Article  PubMed  Google Scholar 

  11. Outerbridge RE (1961) The etiology of chondromalacia patellae. J Bone Joint Surg Br 43-B:752–757

  12. Noyes FR, Stabler CL (1989) A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med 17:505–513

    Article  CAS  PubMed  Google Scholar 

  13. Baudendistel KT, Heverhagen JT, Knopp MV (2004) Klinisches MRT bei 3 Tesla: Aktueller Stand. Radiologe 44:11–18

    Article  CAS  PubMed  Google Scholar 

  14. Weber MA, Stillfried F von, Kloth JK, Rehnitz C (2012) Cartilage imaging of the hand and wrist using 3-T MRI. Semin Musculoskelet Radiol 16:71–87

    Article  PubMed  Google Scholar 

  15. Link TM, Stahl R, Woertler K (2007) Cartilage imaging: motivation, techniques, current and future significance. Eur Radiol 17:1135–1146

    Article  PubMed  Google Scholar 

  16. Palmer AJ, Brown CP, McNally EG et al (2013) Non-invasive imaging of cartilage in early osteoarthritis. Bone Joint J 95-B:738–746

  17. Woertler K, Strothmann M, Tombach B, Reimer P (2000) Detection of articular cartilage lesions: experimental evaluation of low- and high-field-strength MR imaging at 0.18 and 1.0 T. J MagnReson Imaging 11:678–685

    Article  CAS  Google Scholar 

  18. Vahlensieck M, Schnieber O (2003) Routineperformance eines offenen Niederfeld-MRT-Geräts in der Beurteilung des Kniebinnenschadens und Vergleich mit Hochfeldsystemen. Orthopäde 32:175–178

    Article  CAS  PubMed  Google Scholar 

  19. Link TM, Sell CA, Masi JN et al (2005) 3.0 vs 1.5 T MRI in the detection of focal cartilage pathology – ROC analysis in an experimental model. Osteoarthritis Cartilage 14:63–70

    Article  PubMed  Google Scholar 

  20. Kijowski R, Blankenbaker DG, Davis KW et al (2009) Comparison of 1.5- and 3.0-T MR imaging for evaluating the articular cartilage of the knee joint. Radiology 250:839–848

    Article  PubMed  Google Scholar 

  21. Trattnig S, Zbýň S, Schmitt B et al (2012) Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications. Eur Radiol 22:2338–2346

    Article  PubMed  Google Scholar 

  22. Welsch GH, Juras V, Szomolanyi P et al (2012) Magnetic resonance imaging of the knee at 3 and 7 tesla: a comparison using dedicated multi-channel coils and optimised 2D and 3D protocols. Eur Radiol 22:1852–1859

    Article  PubMed  Google Scholar 

  23. Krug R, Stehling C, Kelley DA et al (2009) Imaging of the musculoskeletal system in vivo using ultra-high field magnetic resonance at 7 T. Invest Radiol 44:613–618

    Article  PubMed  Google Scholar 

  24. Glaser C (2006) Knorpelbildgebung. Radiologe 46:16–25

    Article  CAS  PubMed  Google Scholar 

  25. Mosher TJ, Smith H, Dardzinski BJ et al (2001) MR imaging and T2 mapping of femoral cartilage: in vivo determination of the magic angle effect. AJR Am J Roentgenol 177:665–669

    Article  CAS  PubMed  Google Scholar 

  26. Goodwin DW, Zhu H, Dunn JF (2000) In vitro MR imaging of hyaline cartilage: correlation with scanning electron microscopy. AJR Am J Roentgenol 174:405–409

    Article  CAS  PubMed  Google Scholar 

  27. Yoshioka H, Stevens K, Hargreaves BA et al (2004) Magnetic resonance imaging of articular cartilage of the knee: comparison between fat-suppressed three-dimensional SPGR imaging, fat-suppressed FSE imaging, and fat-suppressed three-dimensional DEFT imaging, and correlation with arthroscopy. J Magn Reson Imaging 20:857–864

    Article  PubMed  Google Scholar 

  28. Potter HG, Linklater JM, Allen AA et al (1998) Magnetic resonance imaging of articular cartilage in the knee. An evaluation with use of fast-spin-echo imaging. J Bone Joint Surg Am 80:1276–1284

    CAS  PubMed  Google Scholar 

  29. Gold GE, Chen CA, Koo S et al (2009) Recent advances in MRI of articular cartilage. AJR Am J Roentgenol 193:628–638

    Article  PubMed Central  PubMed  Google Scholar 

  30. Gold GE, McCauley TR, Gray ML, Disler DG (2003) What’s new in cartilage? Radiographics 23:1227–1242

    Article  PubMed  Google Scholar 

  31. Siemens Healthcare (2010) MRI Acronyms. http://www.healthcare.siemens.com/siemens_hwem-hwem_ssxa_websites-context-root/wcm/idc/groups/public/@global/@imaging/@mri/documents/download/mdaw/mty1/~edisp/mri_acronyms-00033460.pdf

  32. Recht MP, Piraino DW, Paletta GA et al (1996) Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in detection of patellofemoral articular cartilage abnormalities. Radiology 198:209–212

    CAS  PubMed  Google Scholar 

  33. Murphy BJ (2001) Evaluation of grades 3 and 4 chondromalacia of the knee using T2*-weighted 3D gradient-echo articular cartilage imaging. Skeletal Radiol 30:305–311

    Article  CAS  PubMed  Google Scholar 

  34. Hardy PA, Recht MP, Piraino D et al (1996) Optimization of a dual echo in the steady state (DESS) free-precession sequence for imaging cartilage. J Magn Reson Imaging 6:329–335

    Article  CAS  PubMed  Google Scholar 

  35. Eckstein F, Hudelmaier M, Wirth W et al (2006) Double echo steady state magnetic resonance imaging of knee articular cartilage at 3 Tesla: a pilot study for the Osteoarthritis Initiative. Ann Rheum Dis 65:433–441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Peterfy CG, Schneider E, Nevitt M (2008) The osteoarthritis initiative: report on the design rationale for the magnetic resonance imaging protocol for the knee. Osteoarthritis Cartilage 16:1433–1441

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Kijowski R, Gold GE (2011) Routine 3D magnetic resonance imaging of joints. J Magn Reson Imaging 33:758–771

    Article  PubMed  Google Scholar 

  38. Crema MD, Roemer FW, Marra MD et al (2011) Articular cartilage in the knee: current MR imaging techniques and applications in clinical practice and research. Radiographics 31:37–61

    Article  PubMed  Google Scholar 

  39. Lenk S, Ludescher B, Martirosan P et al (2004) 3.0 T high-resolution MR imaging of carpal ligaments and TFCC. Rofo 176:664–667

    Article  CAS  PubMed  Google Scholar 

  40. Lee MJ, Motamedi K, Chow K, Seeger LL (2008) Gradient-recalled echo sequences in direct shoulder MR arthrography for evaluating the labrum. Skeletal Radiol 37:19–25

    Article  PubMed  Google Scholar 

  41. Schmid MR, Pfirrmann CW, Koch P et al (2005) Imaging of patellar cartilage with a 2D multiple-echo data image combination sequence. AJR Am J Roentgenol 184:1744–1748

    Article  PubMed  Google Scholar 

  42. Ristow O, Steinbach L, Sabo G et al (2009) Isotropic 3D fast spin-echo imaging versus standard 2D imaging at 3.0 T of the knee – image quality and diagnostic performance. Eur Radiol 19:1263–1272

    Article  PubMed  Google Scholar 

  43. Notohamiprodjo M, Horng A, Kuschel B et al (2012) 3D-imaging of the knee with an optimized 3D-FSE-sequence and a 15-channel knee-coil. Eur J Radiol 81:3441–3449

    Article  PubMed  Google Scholar 

  44. Stevens KJ, Wallace CG, Chen W et al (2001) Imaging of the wrist at 1.5 T using isotropic three-dimensional fast spin echo CUBE. J Magn Reson Imaging 33:908–915

    Article  Google Scholar 

  45. Chhabra A, Soldatos T, Thawait GK et al (2012) Current perspectives on the advantages of 3-T MR imaging of the wrist. Radiographics 32:879–896

    Article  PubMed  Google Scholar 

  46. Hegenscheid K, Puls R, Rosenberg C (2012) Bildgebungsstrategie bei Kniegelenkverletzungen. Radiologe 52:980–986

    Article  CAS  PubMed  Google Scholar 

  47. Sutter R, Zubler V, Hoffmann A et al (2014) Hip MRI: how useful is intraarticular contrast material for evaluating surgically proven lesions of the labrum and articular cartilage? AJR Am J Roentgenol 202:160–169

    Article  PubMed  Google Scholar 

  48. Becce F, Richarme D, Omoumi P et al (2013) MR arthrography of the shoulder under axial traction: feasibility study to evaluate the superior labrum-biceps tendon complex and articular cartilage. J Magn Reson Imaging 37:1228–1233

    Article  PubMed  Google Scholar 

  49. Guntern D, Becce F, Richarme D et al (2011) Direct magnetic resonance arthrography of the wrist with axial traction: a feasibility study to assess joint cartilage. J Magn Reson Imaging 34:239–244

    Article  PubMed  Google Scholar 

  50. Mosher TJ, Dardzinski BJ (2004) Cartilage MRI T2 relaxation time mapping: overview and applications. Semin Musculoskelet Radiol 8:355–368

    Article  PubMed  Google Scholar 

  51. Burstein D, Velyvis J, Scott KT et al (2001) Protocol issues for delayed Gd(DTPA)(2-)-enhanced MRI (dGEMRIC) for clinical evaluation ofarticular cartilage. Magn Reson Med 45:36–41

    Article  CAS  PubMed  Google Scholar 

  52. Van Ginckel A, Baelde N, Almqvist KF et al (2010) Functional adaptation of knee cartilage in asymptomatic female novice runners compared to sedentary controls: a longitudinal analysis using delayed Gadolinium Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC). Osteoarthritis Cartilage 18:1564–1569

    Article  Google Scholar 

  53. Matzat SJ, Tiel J van, Gold GE, Oei EH (2013) Quantitative MRI techniques of cartilage composition. Quant Imaging Med Surg 3:162–174

    PubMed Central  PubMed  Google Scholar 

  54. Venn M, Maroudas A (1977) Chemical composition and swelling of normal and osteoarthrotic femoral head cartilage. I. Chemical composition. Ann Rheum Dis 36:121–129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Bashir A, Gray ML, Burstein D (1996) Gd-DTPA2- as a measure of cartilage degradation. Magn Reson Med 36:665–673

    Article  CAS  PubMed  Google Scholar 

  56. Bashir A, Gray ML, Boutin RD, Burstein D (1997) Glycosaminoglycan inarticular cartilage: in vivo assessment with delayed Gd(DTPA)(2-)-enhanced MR imaging. Radiology 205:551–558

    CAS  PubMed  Google Scholar 

  57. Bashir A, Gray ML, Hartke J, Burstein D (1999) Nondestructive imaging of human cartilage glycosaminoglycan concentration by MRI. Magn Reson Med 41:857–865

    Article  CAS  PubMed  Google Scholar 

  58. Trattnig S, Mlynarik V, Breitenseher M et al (1999) MRI visualization of proteoglycan depletion in articular cartilage via intravenous administration of Gd-DTPA. Magn Reson Med 17:577–583

    CAS  Google Scholar 

  59. Roos EM, Dahlberg L (2005) Positive effects of moderate exercise on glycosaminoglycan content in knee cartilage: a four-month, randomized, controlled trial in patients at risk of osteoarthritis. Arthritis Rheum 52:3507–3514

    Article  CAS  PubMed  Google Scholar 

  60. Anandacoomarasamy A, Leibman S, Smith G et al (2012) Weight loss in obese people has structure-modifying effects on medial but not on lateral knee articular cartilage. Ann Rheum Dis 71:26–32

    Article  CAS  PubMed  Google Scholar 

  61. Kim YJ, Jaramillo D, Millis MB et al (2003) Assessment of early osteoarthritis in hip dysplasia with delayed gadolinium-enhanced magnetic resonance imaging of cartilage. J Bone Joint Surg Am 85-A:1987–1992

  62. Mamisch TC, Kain MS, Bittersohl B et al (2011) Delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) in femoacetabular impingement. J Orthop Res 29:1305–1311

    Article  PubMed  Google Scholar 

  63. Trattnig S, Domayer S, Welsch GW (2009) MR imaging of cartilage and its repair in the knee – a review. Eur Radiol 19:1582–1594

    Article  CAS  PubMed  Google Scholar 

  64. Welsch GH, Mamisch TC, Quirbach S et al (2009) Evaluation and comparison of cartilage repair tissue of the patella and medial femoral condyle by using morphological MRI and biochemical zonal T2 mapping. Eur Radiol 19:1253–1262

    Article  PubMed  Google Scholar 

  65. Trattnig S, Marlovits S, Gebetsroither S et al (2007) Three-dimensional delayed gadolinium-enhanced MRI of cartilage (dGEMRIC) for in vivo evaluation of reparative cartilage after matrix-associated autologous chondrocyte transplantation at 3.0 T: preliminary results. J Magn Reson Imaging 26:974–982

    Article  PubMed  Google Scholar 

  66. Apprich S, Mamisch TC, Welsch GH et al (2012) Evaluation of articular cartilage in patients with femoroacetabular impingement (FAI) using T2* mapping at different time points at 3.0 T MRI: a feasibility study. Skeletal Radiol 41:987–995

    Article  CAS  PubMed  Google Scholar 

  67. Kijowski R, Blankenbaker DG, Munoz Del Rio A et al (2013) Evaluation of the articular cartilage of the knee joint: value of adding a T2 mapping sequence to a routine MR imaging protocol. Radiology 267:503–513

    Article  PubMed  Google Scholar 

  68. Dardzinski BJ, Mosher TJ, Li S et al (1997) Spatial variation of T2 in human articular cartilage. Radiology 205:546–550

    CAS  PubMed  Google Scholar 

  69. Welsch GH, Mamisch TC, Marlovits S et al (2009) Quantitative T2 mapping during follow-up after matrix-associated autologous chondrocyte transplantation (MACT): full-thickness and zonal evaluation to visualize the maturation of cartilage repair tissue. J Orthop Res 27(7):957–963

    Article  PubMed  Google Scholar 

  70. Welsch GH, Mamisch TC, Domayer SE et al (2008) Cartilage T2 assessment at 3-T MR imaging: in vivo differentiation of normal hyaline cartilage from reparative tissue after two cartilage repair procedures – initial experience. Radiology 247:154–161

    Article  PubMed  Google Scholar 

  71. Ling W, Regatte RR, Navon G, Jerschow A (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci U S A 105:2266–2270

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Schmitt B, Zbýn S, Stelzeneder D et al (2011) Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23)Na MR imaging at 7-T. Radiology 260:257–264

    Article  PubMed  Google Scholar 

  73. Reddy R, Insko EK, Noyszewski EA et al (1998) Sodium MRI of human articular cartilage in vivo. Magn Reson Med 39:697–701

    Article  CAS  PubMed  Google Scholar 

  74. Zbýň S, Stelzeneder D, Welsch GH et al (2012) Evaluation of native hyaline cartilage and repair tissue after two cartilage repair surgery techniques with 23Na MR imaging at 7 T: initial experience. Osteoarthritis Cartilage 20:837–845

    Article  PubMed  Google Scholar 

  75. Duvvuri U, Kudchodkar S, Reddy R, Leigh JS (2002) T(1rho) relaxation can assess longitudinal proteoglycan loss from articular cartilage in vitro. Osteoarthritis Cartilage 10:838–844

    Article  CAS  PubMed  Google Scholar 

  76. Binks DA, Hodgson RJ, Ries ME et al (2013) Quantitative parametric MRI of articular cartilage: a review of progress and open challenges. Br J Radiol 86:20120163

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Einhaltung ethischer Richtlinien

Interessenkonflikt. C. Rehnitz und M.-A. Weber geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Rehnitz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rehnitz, C., Weber, MA. Morphologische und funktionelle Knorpeldiagnostik. Radiologe 54, 599–618 (2014). https://doi.org/10.1007/s00117-014-2663-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-014-2663-1

Schlüsselwörter

Keywords

Navigation