Skip to main content
Log in

Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications

  • Musculoskeletal
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Objectives

This article provides an overview of the initial clinical results of musculoskeletal studies performed at 7 Tesla, with special focus on sodium imaging, new techniques such as chemical exchange saturation transfer (CEST) and T2* imaging, and multinuclear MR spectroscopy.

Methods

Sodium imaging was clinically used at 7 T in the evaluation of patients after cartilage repair procedures because it enables the GAG content to be monitored over time. Sodium imaging and T2* mapping allow insights into the ultra-structural composition of the Achilles tendon and help detect early disease. Chemical exchange saturation transfer was, for the first time, successfully applied in the clinical set-up at 7 T in patients after cartilage repair surgery. The potential of phosphorus MR spectroscopy in muscle was demonstrated in a comparison study between 3 and 7 T, with higher spectral resolution and significantly shorter data acquisition times at 7 T.

Results

These initial clinical studies demonstrate the potential of ultra-high field MR at 7 T, with the advantage of significantly improved sensitivity for other nuclei, such as 23Na (sodium) and 31P (phosphorus).

Conclusions

The application of non-proton imaging and spectroscopy provides new insights into normal and abnormal physiology of musculoskeletal tissues, particularly cartilage, tendons, and muscles.

Key Points

7 T magnetic resonance provides significantly improved sensitivity for 23 Na and 31 P.

Initial clinical studies have now demonstrated ultra-high field MR operating at 7 T.

7 T provides new insights into normal and abnormal physiology of musculoskeletal tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vaughan JT, Garwood M, Collins CM et al (2001) 7T vs. 4T: RF power, homogeneity, and signal-to-noise comparison in head images. Magn Reson Med 46:24–30

    Article  PubMed  CAS  Google Scholar 

  2. Ugurbil K, Adriany G, Andersen P et al (2003) Ultrahigh field magnetic resonance imaging and spectroscopy. Magn Reson Imaging 21:1263–1281

    Article  PubMed  Google Scholar 

  3. Tkac I, Andersen P, Adriany G et al (2001) In vivo 1H NMR spectroscopy of the human brain at 7T. Magn Reson Med 46:451–456

    Article  PubMed  CAS  Google Scholar 

  4. Yacoub E, Shmuel A, Pfeuffer J et al (2001) Imaging brain function in humans at 7 Tesla. Magn Reson Med 45:588–594

    Article  PubMed  CAS  Google Scholar 

  5. Pfeuffer J, Adriany G, Shmuel A et al (2002) Perfusion-based high-resolution functional imaging in the human brain at 7 Tesla. Magn Reson Med 47:903–911

    Article  PubMed  Google Scholar 

  6. Krug R, Carballido-Gamio J, Banerjee S et al (2008) In vivo ultra-high-field magnetic resonance imaging of trabecular bone microarchitecture at 7T. J Magn Reson Imaging 27:854–859

    Article  PubMed  Google Scholar 

  7. Nakada T, Matsuzawa H, Igarashi H et al (2008) In vivo visualization of senile-plaque-like pathology in Alzheimer's disease patients by MR microscopy on a 7T system. J Neuroimaging 18:125–129

    Article  PubMed  Google Scholar 

  8. van der Zwaag W, Francis S, Head K et al (2009) fMRI at 1.5, 3 and 7T: characterising BOLD signal changes. NeuroImage 47:1425–1434

    Article  PubMed  Google Scholar 

  9. Regatte RR, Schweitzer ME (2007) Ultra-high-field MRI of the musculoskeletal system at 7.0T. J Magn Reson Imaging 25:262–269

    Article  PubMed  Google Scholar 

  10. Staroswiecki E, Bangerter NK, Gurney PT et al (2010) In vivo sodium imaging of human patellar cartilage with a 3D cones sequence at 3T and 7T. J Magn Reson Imaging 32:446–451. doi:10.1002/jmri.22191

    Article  PubMed  Google Scholar 

  11. Borthakur A, Mellon E, Niyogi S et al (2006) Sodium and T1rho MRI for molecular and diagnostic imaging of articular cartilage. NMR Biomed 19:781–821

    Article  PubMed  CAS  Google Scholar 

  12. Borthakur A, Shapiro EM, Beers J et al (2000) Sensitivity of MRI to proteoglycan depletion in cartilage: comparison of sodium and proton MRI. Osteoarthr Cartil 8:288–293

    Article  PubMed  CAS  Google Scholar 

  13. Wang L, Wu Y, Chang G et al (2009) Rapid isotropic 3D-sodium MRI of the knee joint in vivo at 7T. J Magn Reson Imaging 30:606–614. doi:10.1002/jmri.21881

    Article  PubMed  Google Scholar 

  14. Madelin G, Lee JS, Inati S et al (2010) Sodium inversion recovery MRI of the knee joint in vivo at 7T. J Magn Reson 207:42–52. doi:10.1016/j.jmr.2010.08.003

    Article  PubMed  CAS  Google Scholar 

  15. Madelin G, Chang G, Otazo R et al (2011) Compressed sensing sodium MRI of cartilage at 7T: preliminary study. J Magn Reson. doi:10.1016/j.jmr.2011.12.005

  16. Madelin G, Babb JS, Xia D et al (2011) Reproducibility and repeatability of quantitative sodium magnetic resonance imaging in vivo in articular cartilage at 3T and 7T. Magn Reson Med. doi:10.1002/mrm.23307

  17. Madelin G, Jerschow A, Regatte RR (2011) Sodium relaxation times in the knee joint in vivo at 7T. NMR Biomed. doi:10.1002/nbm.1768

  18. Wheaton AJ, Borthakur A, Shapiro EM et al (2004) Proteoglycan loss in human knee cartilage: quantitation with sodium MR imaging–feasibility study. Radiology 231:900–905

    Article  PubMed  Google Scholar 

  19. Shapiro EM, Borthakur A, Gougoutas A et al (2002) 23Na MRI accurately measures fixed charge density in articular cartilage. Magn Reson Med 47:284–291

    Article  PubMed  Google Scholar 

  20. Reddy R, Insko EK, Noyszewski EA et al (1998) Sodium MRI of human articular cartilage in vivo. Magn Reson Med 39:697–701

    Article  PubMed  CAS  Google Scholar 

  21. Shapiro EM, Borthakur A, Dandora R et al (2000) Sodium visibility and quantitation in intact bovine articular cartilage using high field (23)Na MRI and MRS. J Magn Reson 142:24–31

    Article  PubMed  CAS  Google Scholar 

  22. Trattnig S, Welsch GH, Juras V et al (2010) 23Na MR imaging at 7T after knee matrix-associated autologous chondrocyte transplantation preliminary results. Radiology 257:175–184

    Article  PubMed  Google Scholar 

  23. Schweitzer ME, Karasick D (2000) MR imaging of disorders of the Achilles tendon. AJR Am J Roentgenol 175:613–625

    PubMed  CAS  Google Scholar 

  24. Samiric T, Parkinson J, Ilic MZ et al (2009) Changes in the composition of the extracellular matrix in patellar tendinopathy. Matrix Biol 28:230–236

    Article  PubMed  Google Scholar 

  25. Fu SC, Chan KM, Rolf CG (2007) Increased deposition of sulfated glycosaminoglycans in human patellar tendinopathy. Clin J Sport Med 17:129–134

    Article  PubMed  Google Scholar 

  26. Juras V, Zbyn S, Pressl C et al (2012) Sodium MR imaging of Achilles tendinopathy at 7T: preliminary results. Radiology 262:199–205

    Article  PubMed  Google Scholar 

  27. Gelberman RH, Manske PR, Vande Berg JS et al (1984) Flexor tendon repair in vitro: a comparative histologic study of the rabbit, chicken, dog, and monkey. J Orthop Res 2:39–48

    Article  PubMed  CAS  Google Scholar 

  28. Robson MD, Benjamin M, Gishen P et al (2004) Magnetic resonance imaging of the Achilles tendon using ultrashort TE (UTE) pulse sequences. Clin Radiol 59:727–735

    Article  PubMed  CAS  Google Scholar 

  29. Du J, Carl M, Diaz E et al (2010) Ultrashort TE T1rho (UTE T1rho) imaging of the Achilles tendon and meniscus. Magn Reson Med 64:834–842

    Article  PubMed  Google Scholar 

  30. Fechete R, Demco DE, Eliav U et al (2005) Self-diffusion anisotropy of water in sheep Achilles tendon. NMR Biomed 18:577–586

    Article  PubMed  CAS  Google Scholar 

  31. Hodgson RJ, Evans R, Wright P et al (2011) Quantitative magnetization transfer ultrashort echo time imaging of the Achilles tendon. Magn Reson Med 65:1372–1376

    Article  PubMed  Google Scholar 

  32. Henkelman RM, Stanisz GJ, Kim JK et al (1994) Anisotropy of NMR properties of tissues. Magn Reson Med 32:592–601

    Article  PubMed  CAS  Google Scholar 

  33. Peto S, Gillis P (1990) Fiber-to-field angle dependence of proton nuclear magnetic relaxation in collagen. Magn Reson Imaging 8:705–712

    Article  PubMed  CAS  Google Scholar 

  34. Juras V, Zbyn S, Pressl C et al (2012) Regional variations of T2* in healthy and pathologic achilles tendon in vivo at 7 Tesla: preliminary results. Magn Reson Med. doi:10.1002/mrm.24136

  35. Forsen S, Hoffman RA (1963) Study of moderately rapid chemical exchange reactions by means of nuclear magnetic double resonance. J Chem Phys 39:2892

    Article  CAS  Google Scholar 

  36. Guivel-Scharen V, Sinnwell T, Wolff SD et al (1998) Detection of proton chemical exchange between metabolites and water in biological tissues. J Magn Reson 133:36–45. doi:10.1006/jmre.1998.1440

    Article  PubMed  CAS  Google Scholar 

  37. Ward KM, Aletras AH, Balaban RS (2000) A new class of contrast agents for MRI based on proton chemical exchange dependent saturation transfer (CEST). J Magn Reson 143:79–87

    Article  PubMed  CAS  Google Scholar 

  38. Ward KM, Balaban RS (2000) Determination of pH using water protons and chemical exchange dependent saturation transfer (CEST). Magn Reson Med 44:799–802

    Article  PubMed  CAS  Google Scholar 

  39. Zhou JY, van Zijl PCM (2006) Chemical exchange saturation transfer imaging and spectroscopy. Prog Nucl Magn Reson Spectrosc 48:109–136

    Article  CAS  Google Scholar 

  40. Ling W, Regatte RR, Schweitzer ME et al (2008) Characterization of bovine patellar cartilage by NMR. NMR Biomed 21:289–295

    Article  PubMed  CAS  Google Scholar 

  41. Ling W, Eliav U, Navon G et al (2008) Chemical exchange saturation transfer by intermolecular double-quantum coherence. J Magn Reson 194:29–32

    Article  PubMed  CAS  Google Scholar 

  42. Ling W, Regatte RR, Navon G et al (2008) Assessment of glycosaminoglycan concentration in vivo by chemical exchange-dependent saturation transfer (gagCEST). Proc Natl Acad Sci USA 105:2266–2270

    Article  PubMed  CAS  Google Scholar 

  43. Schmitt B, Bock M, Stieltjes B et al (2010) A new, 3D GRE based CEST imaging method for clinical application and verification with gagCEST in articular cartilage. In: Proceedings of the 18th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Stockholm

  44. Vinogradov E, Ivanishev A, Grant AK et al (2010) CEST and sodium imaging of glycosaminoglycans in-vivo in the 3T: preliminary results. In: Proceedings of the 18th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Stockholm

  45. Fenty M, Kassey V, Kogan F et al (2011) Feasibility of CEST imaging on the guinea pig stifle at 9.4T. In: Proceedings of the 19th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Montreal

  46. Vinogradov E, Lenkinski RE (2010) Detection of glycosaminoglycans using positive CEST approach. In: Proceedings of the 18th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Stockholm

  47. Varma G, Alsop DC, Lenkinski RE et al (2011) Optimization of pulsed-gagCEST at 3.0T. In: Proceedings of the 19th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Montreal

  48. Varma G, Lenkinski RE, Vinogradov E (2011) Keyhole chemical exchange saturation transfer. In: Proceedings of the 19th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Montreal

  49. Kim M, Chan Q, Anthony MP et al (2010) Assessment of glycosaminoglycan distribution in human lumbar intervertebral discs using chemical exchange saturation transfer. In: Proceedings of the 18th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Stockholm

  50. Wei W, Jia G, Flanigan DC et al (2011) Examining the accuracy of dual echo B0 map for field inhomgeneity correction with the application of gagCEST in articular cartilage at 3T. In: Proceedings of the 19th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Montreal

  51. Schmitt B, Zbyn S, Stelzeneder D et al (2011) Cartilage quality assessment by using glycosaminoglycan chemical exchange saturation transfer and (23)Na MR imaging at 7T. Radiology 260:257–264

    Article  PubMed  Google Scholar 

  52. Ling W, Saar G, Regatte R et al (2009) Assessing the intervertebral disc via gagCEST. In: Proceedings of the 17th Scientific Meeting, International Society for Magnetic Resonance in Medicine, Honolulu

  53. Kim M, Chan Q, Anthony MP et al (2011) Assessment of glycosaminoglycan distribution in human lumbar intervertebral discs using chemical exchange saturation transfer at 3T: feasibility and initial experience. NMR Biomed 24:1137–1144

    Article  PubMed  CAS  Google Scholar 

  54. Boesch C (2007) Musculoskeletal spectroscopy. J Magn Reson Imaging 25:321–338

    Article  PubMed  Google Scholar 

  55. Lindquist D (2008) What can 31P MR spectroscopy tell us about muscle disease? Radiology 247:1–2

    Article  PubMed  Google Scholar 

  56. Taylor DJ (2000) Clinical utility of muscle MR spectroscopy. Semin Musculoskelet Radiol 4:481–502

    Article  PubMed  CAS  Google Scholar 

  57. Ko SF, Huang CC, Hsieh MJ et al (2008) 31P MR spectroscopic assessment of muscle in patients with myasthenia gravis before and after thymectomy: initial experience. Radiology 247:162–169

    Article  PubMed  Google Scholar 

  58. Taivassalo T, Matthews PM, DeStefano N et al (1996) Combined aerobic training and dichloroacetate improve exercise capacity and indices of aerobic metabolism in muscle cytochrome oxidase deficiency. Neurology 47:529–534

    Article  PubMed  CAS  Google Scholar 

  59. Lodi R, Hart PE, Rajagopalan B et al (2001) Antioxidant treatment improves in vivo cardiac and skeletal muscle bioenergetics in patients with Friedreich's ataxia. Ann Neurol 49:590–596

    Article  PubMed  CAS  Google Scholar 

  60. Bogner W, Chmelik M, Schmid AI et al (2009) Assessment of P-31 relaxation times in the human calf muscle: a comparison between 3T and 7T in vivo. Magn Reson Med 62:574–582

    Article  PubMed  CAS  Google Scholar 

  61. Stephenson MC, Frances G, Napolitano A et al (2011) Applications of multi-nuclear magnetic resonance spectroscopy at 7T. World J Radiol 3:105–113

    Article  PubMed  Google Scholar 

  62. Valkovič L, Chmelík M, Just-Kukurova I et al (2011) Time-resolved phosphorous magnetization transfer of the human calf muscle at 3T and 7T: a feasibility study. Eur J Radiol. doi:10.1016/j.ejrad.2011.09.024,

  63. Bogner W, Chmelik M, Andronesi OC et al (2011) In vivo (31)P spectroscopy by fully adiabatic extended image selected in vivo spectroscopy: a comparison between 3T and 7T. Magn Reson Med 66:923–930

    Article  PubMed  CAS  Google Scholar 

  64. Chmelík M, Just-Kukurová I, Gruber S et al (2012) Fully adiabatic 31P 2D-CSI with reduced chemical shift displacement error at 7T – GOIA-1D-ISIS/2D-CSI – goISICS. Magn Reson Med (in press)

  65. Kan HE, Klomp DWJ, Wong CS et al (2010) In vivo (31)P MRS detection of an alkaline inorganic phosphate pool with short T1 in human resting skeletal muscle. NMR Biomed 23:995–1000

    Article  PubMed  CAS  Google Scholar 

  66. Meyerspeer M, Scheenen T, Schmid AI et al (2011) Semi-LASER localized dynamic (31)P magnetic resonance spectroscopy in exercising muscle at ultra-high magnetic field. Magn Reson Med 65:1207–1215

    Article  PubMed  Google Scholar 

  67. Krssak M, Petersen KF, Dresner A et al (1999) Intramyocellular lipid concentrations are correlated with insulin sensitivity in humans: a H-1 NMR spectroscopy study. Diabetologia 42:113–116

    Article  PubMed  CAS  Google Scholar 

  68. Negendank W (1992) Studies of human tumors by MRS—a review. NMR Biomed 5:303–324

    Article  PubMed  CAS  Google Scholar 

  69. Khuu A, Ren J, Dimitrov I et al (2009) Orientation of lipid strands in the extracellular compartment of muscle: effect on quantitation of intramyocellular lipids. Magn Reson Med 61:16–21

    Article  PubMed  CAS  Google Scholar 

  70. Ramadan S, Ratai EM, Wald LL et al (2010) In vivo 1D and 2D correlation MR spectroscopy of the soleus muscle at 7T. J Magn Reson 204:91–98

    Article  PubMed  CAS  Google Scholar 

  71. Taylor R, Price TB, Rothman DL et al (1992) Validation of C-13 NMR measurement of human skeletal-muscle glycogen by direct biochemical assay of needle-biopsy samples. Magn Reson Med 27:13–20

    Article  PubMed  CAS  Google Scholar 

  72. Krssak M, Petersen KF, Bergeron R et al (2000) Intramuscular glycogen and intramyocellular lipid utilization during prolonged exercise and recovery in man: a (13)C and (1)H nuclear magnetic resonance spectroscopy study. J Clin Endocrinol Metab 85:748–754

    Article  PubMed  CAS  Google Scholar 

  73. Prompers JJ, Jeneson JAL, Drost MR et al (2006) Dynamic MRS and MRI of skeletal muscle function and biomechanics. NMR Biomed 19:927–953

    Article  PubMed  Google Scholar 

  74. Szendroedi J, Schmid AI, Meyerspeer M et al (2009) Impaired mitochondrial function and insulin resistance of skeletal muscle in mitochondrial diabetes. Diabetes Care 32:677–679

    Article  PubMed  CAS  Google Scholar 

  75. Kuhl CK, Layer G, Traber F et al (1994) Mitochondrial encephalomyopathy—correlation of P-31 exercise MR spectroscopy with clinical findings. Radiology 192:223–230

    PubMed  CAS  Google Scholar 

  76. Taylor DJ, Kemp GJ, Radda GK (1994) Bioenergetics of skeletal-muscle in mitochondrial myopathy. J Neurol Sci 127:198–206

    Article  PubMed  CAS  Google Scholar 

  77. Duboc D, Jehenson P, Dinh ST et al (1987) Phosphorus NMR-spectroscopy study of muscular enzyme deficiencies involving glycogenolysis and glycolysis. Neurology 37:663–671

    Article  PubMed  CAS  Google Scholar 

  78. Mccully KK, Argov Z, Boden BP et al (1988) Detection of muscle injury in humans with 31-P magnetic-resonance spectroscopy. Muscle Nerve 11:212–216

    Article  PubMed  CAS  Google Scholar 

  79. Phielix E, Mensink M (2008) Type 2 diabetes mellitus and skeletal muscle metabolic function. Physiol Behav 94:252–258

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Funding for this study was provided by Vienna Spots of Excellence des Wiener Wissenschafts- und Technologie-Fonds (WWTF) and Vienna Advanced Imaging Center; grant sponsor: VIACLIC and the Slovak Scientific Grant Agency VEGA; grant number: 2/0090/11.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siegfried Trattnig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trattnig, S., Zbýň, Š., Schmitt, B. et al. Advanced MR methods at ultra-high field (7 Tesla) for clinical musculoskeletal applications. Eur Radiol 22, 2338–2346 (2012). https://doi.org/10.1007/s00330-012-2508-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-012-2508-0

Keywords

Navigation