Skip to main content
Log in

Knorpelbildgebung

Imaging of cartilage

  • Kniegelenkdiagnostik
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Übergeordnetes Therapieziel bei Knorpelschäden ist die Gewährleistung der optimal möglichen Gelenkfunktionalität durch Erhaltung bzw. Wiederherstellung einer stabilen Kongruenz und einer ausgeglichenen mechanischen Belastungssituation im Gelenk. Aufgabe der Magnetresonanztomographier (MRT) ist es, Zahl, Tiefe und flächenhafte Ausdehnung von Knorpelveränderungen und deren Verteilung über die verschiedenen Gelenkkompartimente zu beschreiben.

Für eine adäquate Knorpeldiagnostik in der MRT ist eine hohe räumliche Auflösung bei gutem Signal-zu-Rausch-Verhältnis (SNR) und gutem Kontrast zum Gelenkbinnenraum und zum subchondralen Knochen nötig. Letzterer ergibt sich bei TSE-Sequenzen für Echozeiten um 30–50 ms. Die Darstellung von Läsionen in mehreren Ebenen erhöht die Treffsicherheit. Kurze Echozeit, hohe Bandbreite und geeignete Wahl der Frequenzkodierrichtung tragen zur Minimierung von Metallartefakten bei.

Moderate T2w-TSE-Sequenzen stellen Binnenveränderungen am Knorpel, subchondrale Knochenmarködem-ähnliche Areale als Hinweis auf etwaige benachbarte Knorpelläsionen und Erguss, der Knorpeldefekte kontrastreich konturiert, sensitiv dar. Die Stärke der T1w-FS/WE-3D-GE-Sequenzen ist ihre hohe räumliche Auflösung, die die graduelle Erfassung von Knorpelerosionen unterstützt.

Kriterien zur Beurteilung der Stabilität bei Osteochondrosis dissecans (OD) sind die Grenzfläche zum umgebenden Knochen, die Integrität der Knorpeloberfläche und assoziierte zystische Veränderungen. Die Treffsicherheit steigt, wenn mehrere Kriterien zusammentreffen, die Prognose ist assoziiert mit der Größe des betroffenen Areals.

Abstract

The motivation for cartilage repair is the preservation of adequate joint motion. Repairing joint surface congruity and providing balanced load bearing are crucial for this. MRI can contribute to this goal by describing number, depth, size, and distribution of cartilage lesions throughout the different joint compartments.

Essential to such a contribution are adequate spatial resolution at a reasonable SNR together with good contrast between both cartilage and the subchondral bone as well as the joint space. For TSE sequences, this is achieved using TEs between 30 and 50 ms. Diagnostic accuracy is optimal when a lesion is depicted in more than one plane. Short TE, high bandwidth, and the appropriate orientation of the frequency encoding direction contribute to minimizing metal artifacts.

Besides internal alterations of the cartilage’s matrix, moderately T2-weighted TSE sequences sensitively depict bone marrow edema such as signal alterations and joint effusion, both contributing to highlight even subtle cartilage lesions. T1-weighted FS/WE 3D GE sequences profit from their high spatial resolution to appreciate gradual erosion of the cartilage.

In OD the interface to the surrounding bone, the integrity of the overlying cartilage, and associated cysts are used to determine stability. The presence of two or more findings increases diagnostic accuracy. Prognosis is associated with the size of the affected area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1a–c
Abb. 2a–d
Abb. 3a–c
Abb. 4a–d
Abb. 5a–i
Abb. 6
Abb. 7a–e

Literatur

  1. Azer NM, Winalski CS, Minas T (2004) MR imaging for surgical planning and postoperative assessment in early osteoarthritis. Radiol Clin North Am 42(1):43–60

    Article  PubMed  Google Scholar 

  2. Boegard TL, Rudling O, Petersson IF, Jonsson K (2003) Distribution of MR-detected cartilage defects of the patellofemoral joint in chronic knee pain. Osteoarthritis Cartil 11(7):494–498

    Article  Google Scholar 

  3. Bohndorf K (1999) Imaging of acute injuries of the articular surfaces (chondral, osteochondral and subchondral fractures). Skeletal Radiol 28(10):545–560

    Article  PubMed  Google Scholar 

  4. Bredella MA, Tirman PF, Peterfy CG, Zarlingo M, Feller JF, Bost FW, Belzer JP, Wischer TK, Genant HK (1999) Accuracy of T2-weighted fast spin-echo MR imaging with fat saturation in detecting cartilage defects in the knee: comparison with arthroscopy in 130 patients. AJR Am J Roentgenol 172(4):1073–1080

    PubMed  Google Scholar 

  5. Broderick LS, Turner DA, Renfrew DL, Schnitzer TJ, Huff JP, Harris C (1994) Severity of articular cartilage abnormality in patients with osteoarthritis: evaluation with fast spin-echo MR vs arthroscopy. AJR Am J Roentgenol 162(1):99–103

    PubMed  Google Scholar 

  6. Brossmann J, Frank L, Resnick D (1997) Detection of cartilage lesions with fat-suppressed three-dimensional spoiled gradient-echo MR imaging. AJR Am J Roentgenol 169(3):910–911

    Google Scholar 

  7. Czervionke LF, Daniels DL (1988) Cervical spine anatomy and pathologic processes. Applications of new MR imaging techniques. Radiol Clin North Am 26(5):921–947

    PubMed  Google Scholar 

  8. De Smet AA, Ilahi OA, Graf BK (1996) Reassessment of the MR criteria for stability of osteochondritis dissecans in the knee and ankle. Skeletal Radiol 25(2):159–163

    Article  PubMed  Google Scholar 

  9. De Smet AA, Ilahi OA, Graf BK (1997) Untreated osteochondritis dissecans of the femoral condyles: prediction of patient outcome using radiographic and MR findings. Skeletal Radiol 26(8):463–467

    Article  PubMed  Google Scholar 

  10. Disler DG, McCauley TR, Wirth CR, Fuchs MD (1995) Detection of knee hyaline cartilage defects using fat-suppressed three-dimensional spoiled gradient-echo MR imaging: comparison with standard MR imaging and correlation with arthroscopy. AJR Am J Roentgenol 165(2):377–382

    PubMed  Google Scholar 

  11. Disler DG, McCauley TR, Kelman CG, Fuchs MD, Ratner LM, Wirth CR, Hospodar PP (1996) Fat-suppressed three-dimensional spoiled gradient-echo MR imaging of hyaline cartilage defects in the knee: comparison with standard MR imaging and arthroscopy. AJR Am J Roentgenol 167(1):127–132

    PubMed  Google Scholar 

  12. Erickson SJ, Waldschmidt JG, Czervionke LF, Prost RW (1996) Hyaline cartilage: truncation artifact as a cause of trilaminar appearance with fat-suppressed three-dimensional spoiled gradient-recalled sequences. Radiology 201(1):260–264

    PubMed  Google Scholar 

  13. Frank LR, Brossmann J, Buxton RB, Resnick D (1997) MR imaging truncation artifacts can create a false laminar appearance in cartilage. AJR Am J Roentgenol 168(2):547–554

    PubMed  Google Scholar 

  14. Glaser C, Faber S, Eckstein F, Fischer H, Springer V, Heudorfer L, Stammberger T, Englmeier KH, Reiser M (2001) Optimization and validation of a rapid high-resolution T1w 3D FLASH water excitation MRI sequence for the quantitative assessment of articular cartilage volume and thickness. Magn Reson Imaging 19(2):177–185

    Article  PubMed  Google Scholar 

  15. Goodwin DW, Dunn JF (2002) MR imaging and T2 mapping of femoral cartilage. AJR Am J Roentgenol 178(6):1568–1569

    PubMed  Google Scholar 

  16. Hangody L, Rathonyi GK, Duska Z, Vasarhelyi G, Fules P, Modis L (2004) Autologous osteochondral mosaicplasty. Surgical technique. J Bone Joint Surg [Am] 86-A [Suppl 1]:65–72

  17. Hardy PA, Recht MP, Piraino DW (1998) Fat suppressed MRI of articular cartilage with a spatial-spectral excitation pulse. J Magn Reson Imaging 8(6):1279–1287

    PubMed  Google Scholar 

  18. Huegli RW, Moelleken SM, Stork A, Bonel HM, Bredella MA, Meckel S, Genant HK, Tirman PF (2005) MR imaging of post-traumatic articular cartilage injuries confined to the femoral trochlea. Arthroscopic correlation and clinical significance. Eur J Radiol 53(1):90–95

    Article  PubMed  Google Scholar 

  19. Johnson DL, Urban WP Jr, Caborn DN, Vanarthos WJ, Carlson CS (1998) Articular cartilage changes seen with magnetic resonance imaging-detected bone bruises associated with acute anterior cruciate ligament rupture. Am J Sports Med 26(3):409–414

    PubMed  Google Scholar 

  20. Kneeland JB (2001) Articular cartilage and the magic angle effect. AJR Am J Roentgenol 177(3):671–672

    PubMed  Google Scholar 

  21. Lahm A, Uhl M, Erggelet C, Haberstroh J, Mrosek E (2004) Articular cartilage degeneration after acute subchondral bone damage: an experimental study in dogs with histopathological grading. Acta Orthop Scand 75(6):762–767

    Article  PubMed  Google Scholar 

  22. Link TM, Majumdar S, Peterfy C, Daldrup HE, Uffmann M, Dowling C, Steinbach L, Genant HK (1998) High resolution MRI of small joints: impact of spatial resolution on diagnostic performance and SNR. Magn Reson Imaging 16(2):147–155

    Article  PubMed  Google Scholar 

  23. McCauley TR (2002) MR imaging of chondral and osteochondral injuries of the knee. Radiol Clin North Am 40(5):1095–1107

    Article  PubMed  Google Scholar 

  24. McCauley TR, Disler DG (1998) MR imaging of articular cartilage. Radiology 209(3):629–640

    PubMed  Google Scholar 

  25. Minas T, Chiu R (2000) Autologous chondrocyte implantation. Am J Knee Surg 13(1):41–50

    PubMed  Google Scholar 

  26. Mlynarik V (2002) Magic angle effect in articular cartilage. AJR Am J Roentgenol 178(5):1287

    PubMed  Google Scholar 

  27. Mohr A (2003) The value of water-excitation 3D FLASH and fat-saturated PDw TSE MR imaging for detecting and grading articular cartilage lesions of the knee. Skeletal Radiol 32(7):396–402, Epub 2003 Apr 26

    Article  PubMed  Google Scholar 

  28. Mosher TJ, Pruett SW (1999) Magnetic resonance imaging of superficial cartilage lesions: role of contrast in lesion detection. J Magn Reson Imaging 10(2):178–182

    Article  PubMed  Google Scholar 

  29. Nawata K, Teshima R, Morio Y, Hagino H (1999) Anomalies of ossification in the posterolateral femoral condyle: assessment by MRI. Pediatr Radiol 29(10):781–784

    Article  PubMed  Google Scholar 

  30. Noyes FR, Stabler CL (1989) A system for grading articular cartilage lesions at arthroscopy. Am J Sports Med;17(4):505–513

    Google Scholar 

  31. O’Connor MA, Palaniappan M, Khan N, Bruce CE (2002) Osteochondritis dissecans of the knee in children. A comparison of MRI and arthroscopic findings. J Bone Joint Surg [Br] 84(2):258–262

    Google Scholar 

  32. Peterfy CG, Majumdar S, Lang P, van Dijke CF, Sack K, Genant HK (1994) MR imaging of the arthritic knee: improved discrimination of cartilage, synovium, and effusion with pulsed saturation transfer and fat-suppressed T1-weighted sequences. Radiology 191(2):413–419

    PubMed  Google Scholar 

  33. Peterson L, Minas T, Brittberg M, Nilsson A, Sjogren-Jansson E, Lindahl A (2000) Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 374:212–234

    Article  PubMed  Google Scholar 

  34. Recht MP, Kramer J, Marcelis S, Pathria MN, Trudell D, Haghighi P, Sartoris DJ, Resnick D (1993) Abnormalities of articular cartilage in the knee: analysis of available MR techniques. Radiology 187(2):473–478

    PubMed  Google Scholar 

  35. Recht MP, Piraino DW, Paletta GA, Schils JP, Belhobek GH (1996) Accuracy of fat-suppressed three-dimensional spoiled gradient-echo FLASH MR imaging in the detection of patellofemoral articular cartilage abnormalities. Radiology 198(1):209–212

    PubMed  Google Scholar 

  36. Romaneehsen B, Oberholzer K, Muller LP, Kreitner KF (2003) Rapid musculoskeletal magnetic resonance imaging using integrated parallel acquisition techniques (IPAT) — initial experiences. Rofo 175(9):1193–1197

    PubMed  Google Scholar 

  37. Rubenstein JD, Li JG, Majumdar S, Henkelman RM (1997) Image resolution and signal-to-noise ratio requirements for MR imaging of degenerative cartilage. AJR Am J Roentgenol 169(4):1089–1096

    PubMed  Google Scholar 

  38. Schweitzer ME, White LM (1996) Does altered biomechanics cause marrow edema? Radiology 198(3):851–853

    PubMed  Google Scholar 

  39. Speer KP, Spritzer CE, Goldner JL, Garrett WE Jr (1991) Magnetic resonance imaging of traumatic knee articular cartilage injuries. Am J Sports Med 19(4):396–402

    PubMed  Google Scholar 

  40. Spindler KP, Schils JP, Bergfeld JA, Andrish JT, Weiker GG, Anderson TE, Piraino DW, Richmond BJ, Medendorp SV (1993) Prospective study of osseous, articular, and meniscal lesions in recent anterior cruciate ligament tears by magnetic resonance imaging and arthroscopy. Am J Sports Med 21(4):551–557

    PubMed  Google Scholar 

  41. Steadman JR, Rodkey WG, Rodrigo JJ (2001) Microfracture: surgical technique and rehabilitation to treat chondral defects. Clin Orthop Relat Res 391 [Suppl]:S362–369

    Google Scholar 

  42. Tervonen O, Dietz MJ, Carmichael SW, Ehman RL (1993) MR imaging of knee hyaline cartilage: evaluation of two- and three-dimensional sequences. J Magn Reson Imaging 3(4):663–668

    PubMed  Google Scholar 

  43. White LM, Buckwalter KA (2002) Technical considerations: CT and MR imaging in the postoperative orthopaedic patient. Semin Musculoskelet Radiol 6(1):5–17

    Article  PubMed  Google Scholar 

  44. Xia Y, Moody JB, Alhadlaq H (2002) Orientational dependence of T2 relaxation in articular cartilage: a microscopic MRI (microMRI) study. Magn Reson Med 48(3):460–469

    Article  PubMed  Google Scholar 

Download references

Interessenkonflikt:

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Glaser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Glaser, C. Knorpelbildgebung. Radiologe 46, 16–25 (2006). https://doi.org/10.1007/s00117-005-1287-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-005-1287-x

Schlüsselwörter

Keywords

Navigation