Skip to main content

Advertisement

Log in

Aktuelle Bildnachverarbeitung der aortalen CTA und MRA

Image postprocessing of aortic CTA and MRA

  • Leitthema: Aorta
  • Published:
Der Radiologe Aims and scope Submit manuscript

Zusammenfassung

Die multiplanare Reformatierung (MPR) der Bilddaten aortaler CTA und MRA ist die wichtigste Rekonstruktionsmethode im Hinblick auf eine differenzierte Therapieentscheidung und die präoperative Therapieplanung sowie die Beschreibung postoperativer Komplikationen. Die gekrümmte MPR wird semiautomatisch bzw. vollständig automatisch als Centerline im Gefäßlumen berechnet und für die Bestimmung des orthogonalen Durchmessers und der Längsausdehnung der Pathologie verwendet. Eine reproduzierbar exakte Ausmessung komplexer Pathologien und Gefäßlängsverläufe erweitert das Spektrum der diagnostischen Radiologie. Die gekrümmte MPR dient der semiautomatischen Berechnung der Gefäßmittellinie. Die heutigen Gerätekonsolen können bereits automatisch Maximum-Intensitätsprojektionen (MIP) und Standard-MPR anfertigen und ins Archiv versenden. Die 3D-Visualisierung kann als Volume-rendering-Technik (VRT) effektiv bei der Patientenselektion, Therapieplanung und Nachsorge behilflich sein und in der interdisziplinären Kommunikation des klinischen Alltags ergänzend zu den Quelldaten eingesetzt werden. Die Segmentierung von Hochkontraststrukturen ist meist semiautomatisch möglich, Weichteilstrukturen müssen jedoch weiterhin manuell segmentiert werden. Zur Bildnachverarbeitung sind isotrope CTA-Daten meist besser geeignet als MR-Datensätze, die häufig noch anisotrop sind. In vielen europäischen Ländern wird die Bildnachverarbeitung noch nicht adäquat vergütet, obwohl die Überweiser die 3D-Visualisierungen und Vermessungen oftmals mit Nachdruck einfordern.

Abstract

Multiplanar reformation (MPR) is the most relevant tool for patient selection and precise procedural planning and also for analyzing postinterventional complications. Curved MPR is used primarily for semiautomated or completely automated calculation of the centerline of the vascular lumen and to estimate the orthogonal vessel diameter and longitudinal extent. Reproducible and accurate measurement of complex pathologies and courses of vessels extends the range of diagnostic radiology. Contemporary scanner consoles allow automated processing of maximum intensity projections (MIP) and standard MPR and their storage in PACS. To improve patient selection, procedural planning, root-cause analysis postoperatively for assessment of treatment effects and to make better communication of findings to nonradiologists possible, volume rendering techniques (VRT) are a beneficial adjunct to source images. With current algorithms semiautomated segmentation is satisfactory for vessels and bones, but not for low-contrast structures (soft tissues), which still need to be segmented manually. In general, isotropic CT source data are preferable to MR images, which are often anisotropic. In many European countries image postprocessing is still not adequately reimbursed although the doctors making referrals often specifically and emphatically demand 3D visualization and measurements in daily practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3
Abb. 4
Abb. 5
Abb. 6
Abb. 7

Literatur

  1. Mahesh M (2002) Search for isotropic resolution in CT from conventional through multiple-row detector. Radiographics 22: 949–962

    PubMed  Google Scholar 

  2. Diehm N, Herrmann P, Dinkel HP (2004) Multidetector CT angiography versus digital subtraction angiography for aortoiliac length measurements prior to endovascular AAA repair. J Endovasc Ther 11: 527–534

    Article  PubMed  Google Scholar 

  3. Luccichenti G, Cademartiri F, Pezzella FR et al. (2005) 3D reconstruction techniques made easy: know-how and pictures. Eur Radiol 15: 2146–2156

    Article  PubMed  Google Scholar 

  4. Fink C, Ley S, Kroeker R et al. (2005) Time-resolved contrast-enhanced three-dimensional magnetic resonance angiography of the chest: combination of parallel imaging with view sharing (TREAT). Invest Radiol 40: 40–48

    Article  PubMed  Google Scholar 

  5. Heverhagen JT, Reitz I, Pavlicova M et al. (2007) The impact of the dosage of intravenous gadolinium-chelates on the vascular signal intensity in MR angiography. Eur Radiol 17: 626–637

    Article  PubMed  Google Scholar 

  6. Wintersperger B, Jakobs T, Herzog P et al. (2005) Aorto-iliac multidetector-row CT angiography with low kV settings: improved vessel enhancement and simultaneous reduction of radiation dose. Eur Radiol 15: 334–341

    Article  PubMed  CAS  Google Scholar 

  7. Lee MJ, Kim S, Lee SA et al. (2007) Overcoming artifacts from metallic orthopedic implants at high-field-strength MR imaging and multi-detector CT. Radiographics 27: 791–803

    PubMed  Google Scholar 

  8. Van der Schaaf I, van Leeuwen M, Vlassenbroek A, Velthuis B (2006) Minimizing clip artifacts in multi CT angiography of clipped patients. AJNR Am J Neuroradiol 27: 60–66

    Google Scholar 

  9. Huber A, Matzko M, Wintersperger BJ, Reiser M (2001) Reconstruction methods in postprocessing of CT- and MR-angiography of the aorta. Radiologe 41: 689–694

    Article  PubMed  CAS  Google Scholar 

  10. Ney DR, Fishman EK, Magid D, Kuhlman JE (1989) Interactive real-time multiplanar CT imaging. Radiology 170: 275–276

    PubMed  CAS  Google Scholar 

  11. Lell MM, Anders K, Uder M et al. (2006) New techniques in CT angiography. Radiographics 26 [suppl 1]: S45–S62

  12. Rubin GD, Dake MD, Semba CP (1995) Current status of three-dimensional spiral CT scanning for imaging the vasculature. Radiol Clin North Am 33: 51–70

    PubMed  CAS  Google Scholar 

  13. Gerhards A, Raab P, Herber S et al. (2004) Software-assisted CT-postprocessing of the carotid arteries. Rofo 176: 870–874

    PubMed  CAS  Google Scholar 

  14. Ferencik M, Ropers D, Abbara S et al. (2007) Diagnostic accuracy of image postprocessing methods for the detection of coronary artery stenoses by using multidetector CT. Radiology 243: 696–702

    PubMed  Google Scholar 

  15. Kirchgeorg MA, Prokop M (1998) Increasing spiral CT benefits with postprocessing applications. Eur J Radiol 28: 39–54

    Article  PubMed  CAS  Google Scholar 

  16. Boskamp T, Rinck D, Link F et al. (2004) New vessel analysis tool for morphometric quantification and visualization of vessels in CT and MR imaging data sets. Radiographics 24: 287–297

    Article  PubMed  Google Scholar 

  17. Schreiner S, Paschal CB, Galloway RL (1996) Comparison of projection algorithms used for the construction of maximum intensity projection images. J Comput Assist Tomogr 20: 56–67

    Article  PubMed  CAS  Google Scholar 

  18. Napel S, Rubin GD, Jeffrey RB jr (1993) STS-MIP: a new reconstruction technique for CT of the chest. J Comput Assist Tomogr 17: 832–838

    Article  PubMed  CAS  Google Scholar 

  19. Calhoun PS, Kuszyk BS, Heath DG et al. (1999) Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics 19: 745–764

    PubMed  CAS  Google Scholar 

  20. Madabhushi A, Udupa JK (2006) New methods of MR image intensity standardization via generalized scale. Med Phys 33: 3426–3434

    Article  PubMed  Google Scholar 

  21. Persson A, Brismar TB, Lundstrom C et al. (2006) Standardized volume rendering for magnetic resonance angiography measurements in the abdominal aorta. Acta Radiol 47: 172–178

    Article  PubMed  CAS  Google Scholar 

  22. Herman GT, Liu HK (1977) Display of three-dimensional information in computed tomography. J Comput Assist Tomogr 1: 155–160

    Article  PubMed  CAS  Google Scholar 

  23. Carrascosa P, Capunay C, Vembar M et al. (2005) Multislice CT virtual angioscopy of the abdomen. Abdom Imaging 30: 249–258

    Article  PubMed  CAS  Google Scholar 

  24. Verhoye JP, Sze DY, Ihnken K et al. (2006) Virtual angioscopy in type-A dissection: ascending aortic stent-graft repair. Ann Thorac Surg 82: 347

    Article  PubMed  Google Scholar 

  25. Böckler D, Allenberg JR, Kauczor HU, von Tengg-Kobligk H (2005) Images in vascular medicine. Postprocessing ‚fly-through‘ of multislice computed tomography after thoracic endografting. Vasc Med 10: 61–62

    Article  PubMed  Google Scholar 

  26. Czum JM, Corse WR, Ho VB (2005) MR angiography of the thoracic aorta. Magn Reson Imaging Clin North Am 13: 41–64

    Article  Google Scholar 

  27. Kabul HK, Hagspiel KD (2006) Cross-sectional vascular imaging with CT and MR angiography. J Nucl Cardiol 13: 385–401

    Article  PubMed  Google Scholar 

  28. Yu T, Zhu X, Tang L et al. (2007) Review of CT angiography of aorta. Radiol Clin North Am 45: 461–483

    Article  PubMed  Google Scholar 

  29. Ayuso JR, de Caralt TM, Pages M et al. (2004) MRA is useful as a follow-up technique after endovascular repair of aortic aneurysms with nitinol endoprostheses. J Magn Reson Imaging 20: 803–810

    Article  PubMed  Google Scholar 

  30. Merkle EM, Klein S, Wisianowsky C et al. (2002) Magnetic resonance imaging versus multislice computed tomography of thoracic aortic endografts. J Endovasc Ther 9 [suppl 2]: II2–13

  31. Gawenda M, Gossmann A, Kruger K et al. (2004) Comparison of magnetic resonance imaging and computed tomography of 8 aortic stent-graft models. J Endovasc Ther 11: 627–634

    Article  PubMed  Google Scholar 

  32. Frydrychowicz A, Markl M, Harloff A et al. (2007) [Flow-sensitive in-vivo 4D MR imaging at 3T for the analysis of aortic hemodynamics and derived vessel wall parameters]. Rofo 179: 463–472

    PubMed  CAS  Google Scholar 

  33. Barrett BJ, Parfrey PS (2006) Clinical practice. Preventing nephropathy induced by contrast medium. N Engl J Med 354: 379–386

    Article  PubMed  CAS  Google Scholar 

Download references

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. von Tengg-Kobligk.

Additional information

Dieser Artikel ist Prof. Dr. med. Jens-Rainer Allenberg gewidmet.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

von Tengg-Kobligk, H., Weber, T., Rengier, F. et al. Aktuelle Bildnachverarbeitung der aortalen CTA und MRA. Radiologe 47, 1003–1011 (2007). https://doi.org/10.1007/s00117-007-1583-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00117-007-1583-8

Schlüsselwörter

Keywords

Navigation