Skip to main content
Log in

3D reconstruction techniques made easy: know-how and pictures

  • Computer Applications
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Three-dimensional reconstructions represent a visual-based tool for illustrating the basis of three-dimensional post-processing such as interpolation, ray-casting, segmentation, percentage classification, gradient calculation, shading and illumination. The knowledge of the optimal scanning and reconstruction parameters facilitates the use of three-dimensional reconstruction techniques in clinical practise. The aim of this article is to explain the principles of multidimensional image processing in a pictorial way and the advantages and limitations of the different possibilities of 3D visualisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Mahesh M (2002) Search for isotropic resolution in CT from conventional through multiple-row detector. Radiographics 22:949–962

    Google Scholar 

  2. Ferretti GR, Bricault I, Coulomb M (2001) Virtual tools for imaging of the thorax. Eur Respir J 18:381–392

    Google Scholar 

  3. Grenier PA, Beigelman-Aubry C, Fetita C et al. (2002) New frontiers in CT imaging of airway disease. Eur Radiol 12:1022–1044

    Google Scholar 

  4. van Ooijen PM, Ho KY, Dorgelo J, Oudkerk M (2003) Coronary artery imaging with multidetector CT: visualization issues. Radiographics 23:e16

    Google Scholar 

  5. Lichtenbelt B, Crane R, Naqvi S (1998) Introduction to volume rendering. Prentice Hall PTR, Upper Saddle River, NJ 07458

    Google Scholar 

  6. Polacin A, Kalender WA, Marchal G (1992) Evaluation of section sensitivity profiles and image noise in spiral CT. Radiology 185:29–35

    Google Scholar 

  7. Kalender WA, Seissler W, Klotz E, Vock P (1990) Spiral volumetric CT with single-breath-hold technique, continuous transport, and continuous scanner rotation. Radiology 176:181–183

    CAS  Google Scholar 

  8. Calhoun PS, Kuszyk BS, Heath DG et al. (1999) Three-dimensional volume rendering of spiral CT data: theory and method. Radiographics 19:745–764

    CAS  PubMed  Google Scholar 

  9. Paik DS, Beaulieu CF, Jeffrey RB Jr et al. (2000) Visualization modes for CT colonography using cylindrical and planar map projections. J Comput Assist Tomogr 24:179–188

    Article  CAS  PubMed  Google Scholar 

  10. Semba CP, Rubin GD, Dake MD (1994) Three-dimensional spiral CT angiography of the abdomen. Semin Ultrasound CT MR 15:133–138

    Google Scholar 

  11. Sato Y, Shiraga N, Nakajima S et al. (1998) Local maximum intensity projection (LMIP): a new rendering method for vascular visualization. J Comput Assist Tomogr 22:912–917

    Google Scholar 

  12. Udupa JK (1999) Three-dimensional visualization and analysis methodologies: a current perspective. Radiographics 19:783–806

    Google Scholar 

  13. Fishman EK, Magid D, Ney DR et al. (1991) Three-dimensional imaging. Radiology 181:321–337

    Google Scholar 

  14. Hohne KH, Hanson WA (1992) Interactive 3D segmentation of MRI and CT volumes using morphological operations. J Comput Assist Tomogr 16:285-294

    Google Scholar 

  15. Masutani Y, MacMahon H, Doi K (2001) Automated segmentation and visualization of the pulmonary vascular tree in spiral CT angiography: an anatomy-oriented approach based on three-dimensional image analysis. J Comput Assist Tomogr 25:587–597

    Google Scholar 

  16. Clarke LP, Velthuizen RP, Camacho MA et al. (1995) MRI segmentation: methods and applications. Magn Reson Imaging 13:343–368

    Google Scholar 

  17. Paik DS, Beaulieu CF, Jeffrey RB et al. (1998) Automated flight path planning for virtual endoscopy. Med Phys 25:629–637

    Google Scholar 

  18. Frericks BB, Caldarone FC, Nashan B et al. (2004) 3D CT modeling of hepatic vessel architecture and volume calculation in living donated liver transplantation. Eur Radiol 14:326–333

    Google Scholar 

  19. Luccichenti G, Cademartiri F, Cobelli R, Pavone P (2003) Assessment of organ volume with different techniques using a living liver model. Eur Radiol 13:1286–1290

    Google Scholar 

  20. Summers RM, Beaulieu CF, Pusanik LM et al. (2000) Automated polyp detector for CT colonography: feasibility study. Radiology 216:284–290

    Google Scholar 

  21. Zhang Z, Wang G, Brown BP et al. (2000) Fast algorithm for soft straightening of the colon. Acad Radiol 7:142–148

    Google Scholar 

  22. Masutani Y, Yoshida H, MacEneaney PM, Dachman AH (2001) Automated segmentation of colonic walls for computerized detection of polyps in CT colonography. J Comput Assist Tomogr 25:629–638

    Article  Google Scholar 

  23. Yen SY, Rubin GD, Napel S (1999) Spatially varying longitudinal aliasing and resolution in spiral computed tomography. Med Phys 26:2617–2625

    Google Scholar 

  24. Fleischmann D, Rubin GD, Paik DS et al. (2000) Stair-step artifacts with single versus multiple detector-row helical CT. Radiology 216:185–196

    CAS  PubMed  Google Scholar 

  25. Hopper KD, Pierantozzi D, Potok PS et al. (1996) The quality of 3D reconstructions from 1.0 and 1.5 pitch helical and conventional CT. J Comput Assist Tomogr 20:841–847

    Google Scholar 

  26. Wang G, Vannier MW (1994) Stair-step artifacts in three-dimensional helical CT: an experimental study. Radiology 191:79–83

    Google Scholar 

  27. Kalender WA, Polacin A, Suss C (1994) A comparison of conventional and spiral CT: an experimental study on the detection of spherical lesions. J Comput Assist Tomogr 18:167–176

    Google Scholar 

  28. Brink JA, Heiken JP, Balfe DM et al. (1992) Spiral CT: decreased spatial resolution in vivo due to broadening of section-sensitivity profile. Radiology 185:469–474

    Google Scholar 

  29. Khan MF, Herzog C, Ackermann H et al. (2004) Virtual endoscopy of the tracheo–bronchial system: sub-millimeter collimation with the 16-row multidetector scanner. Eur Radiol 14:1400–1405

    Google Scholar 

  30. Hu H, Fox SH (1996) The effect of helical pitch and beam collimation on the lesion contrast and slice profile in helical CT imaging. Med Phys 23:1943–1954

    Article  CAS  Google Scholar 

  31. Beaulieu CF, Napel S, Daniel BL et al. (1998) Detection of colonic polyps in a phantom model: implications for virtual colonoscopy data acquisition. J Comput Assist Tomogr 22:656–663

    Google Scholar 

  32. Hu H (1999) Multi-slice helical CT: scan and reconstruction. Med Phys 26:5–18

    Article  CAS  Google Scholar 

  33. Wang G, Vannier MW (1996) Maximum volume coverage in spiral computed tomography scanning. Acad Radiol 3:423–428

    Google Scholar 

  34. Hopper KD, Iyriboz TA, Mahraj RP et al. (1998) CT bronchoscopy: optimization of imaging parameters. Radiology 209:872–877

    Google Scholar 

  35. Brink JA (1995) Technical aspects of helical (spiral) CT. Radiol Clin North Am 33:825–841

    Google Scholar 

  36. Wildberger JM, Mahnken AM, Flohr T et al. (2003) Spatial domain image filtering in computed tomography: feasibility study in pulmonary embolism. Eur Radiol 13:717–723

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Luccichenti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luccichenti, G., Cademartiri, F., Pezzella, F.R. et al. 3D reconstruction techniques made easy: know-how and pictures. Eur Radiol 15, 2146–2156 (2005). https://doi.org/10.1007/s00330-005-2738-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00330-005-2738-5

Keywords

Navigation