Skip to main content
Log in

Intrinsic worker mortality depends on behavioral caste and the queens’ presence in a social insect

  • Original Paper
  • Published:
The Science of Nature Aims and scope Submit manuscript

Abstract

According to the classic life history theory, selection for longevity depends on age-dependant extrinsic mortality and fecundity. In social insects, the common life history trade-off between fecundity and longevity appears to be reversed, as the most fecund individual, the queen, often exceeds workers in lifespan several fold. But does fecundity directly affect intrinsic mortality also in social insect workers? And what is the effect of task on worker mortality? Here, we studied how social environment and behavioral caste affect intrinsic mortality of ant workers. We compared worker survival between queenless and queenright Temnothorax longispinosus nests and demonstrate that workers survive longer under the queens’ absence. Temnothorax ant workers fight over reproduction when the queen is absent and dominant workers lay eggs. Worker fertility might therefore increase lifespan, possibly due to a positive physiological link between fecundity and longevity, or better care for fertile workers. In social insects, division of labor among workers is age-dependant with young workers caring for the brood and old ones going out to forage. We therefore expected nurses to survive longer than foragers, which is what we found. Surprisingly, inactive inside workers showed a lower survival than nurses but comparable to that of foragers. The reduced longevity of inactive workers could be due to them being older than the nurses, or due to a positive effect of activity on lifespan. Overall, our study points to behavioral caste-dependent intrinsic mortality rates and a positive association between fertility and longevity not only in queens but also in ant workers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Alloway TM, Buschinger A, Talbot M, Stuart R, Thomas C (1982) Polygyny and polydomy in three North American species of the ant genus Leptothorax Mayr (Hymenoptera: Formicidae). Psyche 89:249–274

    Article  Google Scholar 

  • Amdam GV, Nilsen KA, Norberg K, Fondrk MK, Hartfelder K (2007) Variation in endocrine signaling underlies variation in social life history. Am Nat 170:37–46

    Article  PubMed  PubMed Central  Google Scholar 

  • Bernadou A, Busch J, Heinze J (2015) Diversity in identity: behavioral flexibility, dominance, and age polyethism in a clonal ant. Behav Ecol Sociobiol 69:1365–1375

    Article  Google Scholar 

  • Bocher A, Tirard C, Doums C (2007) Phenotypic plasticity of immune defence linked with foraging activity in the ant Cataglyphis velox. J Evol Biol 20:2228–2234

    Article  CAS  PubMed  Google Scholar 

  • Bourke AFG (1988) Worker reproduction in the higher eusocial Hymenoptera. Q Rev Biol 63:291–311

    Article  Google Scholar 

  • Bourke AF, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton

    Google Scholar 

  • Calabi P, Porter SD (1989) Worker longevity in the fire ant Solenopsis invicta: ergonomic considerations of correlations between temperature, size and metabolic rates. J Insect Physiol 35:643–649

    Article  Google Scholar 

  • Chapuisat M, Keller L (2002) Division of labour influences the rate of ageing in weaver ant workers. P Roy Soc B 269:909–913

    Article  Google Scholar 

  • Charbonneau D, Dornhaus A (2015) Workers ‘specialized’ on inactivity: behavioral consistency of inactive workers and their role in task allocation. Behav Ecol Sociobiol 69:1459–1472

    Article  Google Scholar 

  • Charbonneau D, Hillis N, Dornhaus A (2015) ‘Lazy’ in nature: ant colony time budgets show high ‘inactivity’ in the field as well as in the lab. Insect Soc 62:31–35

    Article  Google Scholar 

  • Choe JC (1988) Worker reproduction and social evolution in ants (Hymenoptera: Formicidae). In: Trager JC (ed) Advances in myrmecology. Brill, New York, pp 163–187

    Google Scholar 

  • Cole BJ (1986) The social behavior of Leptothorax allardycei (Hymenoptera, Formicidae): time budgets and the evolution of worker reproduction. Behav Ecol Sociobiol 18:165–173

    Article  Google Scholar 

  • Colgan TJ, Carolan JC, Bridgett SJ et al (2011) Polyphenism in social insects: insights from a transcriptome-wide analysis of gene expression in the life stages of the key pollinator, Bombus terrestris. BMC Genomics 12:623

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Corbara B, Lachaud JP, Fresneau D (1989) Individual variability, social structure and division of labour in the ponerine ant Ectatomma ruidum Roger (Hymenoptera, Formicidae). Ethology 82:89–100

    Article  Google Scholar 

  • Corona M, Velarde RA, Remolina S et al (2007) Vitellogenin, juvenile hormone, insulin signaling, and queen honey bee longevity. P Natl Acad Sci USA 104:7128–7133

    Article  CAS  Google Scholar 

  • Cuvillier-Hot V, Lenoir A, Crewe R, Malosse C, Peeters C (2004) Fertility signalling and reproductive skew in queenless ants. Anim Behav 68:1209–1219

    Article  Google Scholar 

  • D'Ettorre P, Heinze J, Schulz C, Francke W, Ayasse M (2004) Does she smell like a queen? Chemoreception of a cuticular hydrocarbon signal in the ant Pachycondyla inversa. J Exp Biol 207:1085–1091

    Article  PubMed  Google Scholar 

  • Dixon L, Kuster R, Rueppell O (2014) Reproduction, social behavior, and aging trajectories in honeybee workers. Age 36:89–101

    Article  PubMed  Google Scholar 

  • Dussutour A, Poissonnier LA, Buhl J, Simpson SJ (2016) Resistance to nutritional stress in ants: when being fat is advantageous. J Exp Biol 219:824–833

    Article  PubMed  Google Scholar 

  • Feldmeyer B, Elsner D, Foitzik S (2014) Gene expression patterns associated with caste and reproductive status in ants: worker-specific genes are more derived than queen-specific ones. Mol Ecol 23:151–161

    Article  CAS  PubMed  Google Scholar 

  • Ferreira PG, Patalano S, Chauhan R, Ffrench-Constant R, Gabaldón T, Guigó R, Sumner S (2013) Transcriptome analyses of primitively eusocial wasps reveal novel insights into the evolution of sociality and the origin of alternative phenotypes. Genome Biol 14:R20

    Article  PubMed  PubMed Central  Google Scholar 

  • Finch CE (1990) Longevity senescence and the genome. Chicago University Press, Chicago and London

    Google Scholar 

  • Foitzik S, Heinze J (1998) Nest site limitation and colony takeover in the ant Leptothorax nylanderi. Behav Ecol 9:367–375

  • Fresneau D (1984) Développement ovarien et statut social chez une fourmi primitive Neoponera obscuricornis Emery (Hym. Formicidae, Ponerinae). Insect Soc 31:387–402

    Article  Google Scholar 

  • Giraldo YM, Traniello JFA (2014) Worker senescence and the sociobiology of aging in ants. Behav Evol Sociobiol 68:1901–1919

    Article  Google Scholar 

  • Giraldo YM, Kamhi JF, Fourcassié V et al (2016) Lifespan behavioural and neural resilience in a social insect. Proc Roy Soc B 283:2015–2603

    Article  Google Scholar 

  • Graeff J, Jemielity S, Parker JD, Parker KM, Keller L (2007) Differential gene expression between adult queens and workers in the ant Lasius niger. Mol Ecol 16:675–683

    Article  Google Scholar 

  • Harrison MC, Hammond RL, Mallon EB (2015) Reproductive workers show queenlike gene expression in an intermediately eusocial insect, the bufftailed bumble bee Bombus terrestris. Mol Ecol 24:3043–3063

    Article  CAS  PubMed  Google Scholar 

  • Hartmann A, Heinze J (2003) Lay eggs, live longer: division of labor and life span in a clonal ant species. Evolution 57:2424–2429

    Article  PubMed  Google Scholar 

  • Heinze J, Schrempf A (2008) Aging and reproduction in social insects—a mini-review. Gerontology 54:160–167

    Article  PubMed  Google Scholar 

  • Heinze J, Schrempf A (2012) Terminal investment: individual reproduction of ant queens increases with age. PLoS One 7:e35201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heinze J, Puchinger W, Hölldobler B (1997) Worker reproduction and social hierarchies in Leptothorax ants. Anim Behav 54:849–864

    Article  CAS  PubMed  Google Scholar 

  • Heinze J, Stengl B, Sledge MF (2002) Worker rank, reproductive status and cuticular hydrocarbon signature in the ant, Pachycondyla cf. inversa. Behav Evol Sociobiol 52:59–65

    Article  Google Scholar 

  • Heinze J, Frohschammer S, Bernadou A (2013) Queen life-span and total reproductive success are positively associated in the ant Cardiocondyla cf. kagutsuchi. Behav Ecol Sociobiol 67:1555–1562

    Article  Google Scholar 

  • Helft F, Tirard C, Doums C (2012) Effects of division of labour on immunity in workers of the ant Cataglyphis cursor. Insect Soc 59:333–340

    Article  Google Scholar 

  • Higashi S, Ito F, Sugiura N, Ohkawara K (1994) Worker's age regulates the linear dominance hierarchy in the queenless ponerine ant, Pachycondyla sublaevis (Hymenoptera: Formicidae). Anim Behav 47:179–184

    Article  Google Scholar 

  • Hölldobler B, Wilson EO (1990) The ants. Belknap Press of Harvard Univ. Press, Cambridge

    Book  Google Scholar 

  • Holliday R (2006) Aging is no longer an unsolved problem in biology. Annals New York Academy of Sciences 1067:1–9

    Article  Google Scholar 

  • Jaisson P, Fresneau D, Lachaud JP (1988) Individual traits of social behavior in ants. In: Jeanne RL (ed) Interindividual behavioral variability in social insects. Boulder Westview Press, Boulder, pp 1–51

    Google Scholar 

  • Jandt JM, Dornhaus A (2011) Competition and cooperation: bumblebee spatial organization and division of labor may affect worker reproduction late in life. Behav Ecol Sociobiol 65:2341–2349

    Article  Google Scholar 

  • Jeanne RL (1986) The evolution of the organization of work in social insects. Ital J Zool 20:119–133

    Google Scholar 

  • Jemielity S, Chapuisat M, Parker JD, Keller L (2005) Long live the queen: studying aging in social insects. Age 27:241–248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson BR (2008) Global information sampling in the honey bee. Naturwissenschaften 95:523–530

    Article  CAS  PubMed  Google Scholar 

  • Keller L (1998) Queen lifespan and colony characteristics in ants and termites. Insect Soc 45:235–246

    Article  Google Scholar 

  • Keller L, Genoud M (1997) Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389:958–960

    Article  CAS  Google Scholar 

  • Kirkwood TBL, Rose MR (1991) Evolution of senescence: late survival sacrificed for reproduction. Philos T R Soc B 332:15–24

    Article  CAS  Google Scholar 

  • Klein BA, Olzsowy KM, Klein A, Saunders KM, Seeley TD (2008) Caste-dependent sleep of worker honey bees. J Exp Biol 211:3028–3040

    Article  PubMed  Google Scholar 

  • Konrad M, Pamminger T, Foitzik S (2012) Two pathways ensuring social harmony. Naturwissenschaften 99:627–636

    Article  CAS  PubMed  Google Scholar 

  • Kramer BH, Schaible R (2013) Life span evolution in eusocial workers—a theoretical approach to understanding the effects of extrinsic mortality in a hierarchical system. PLoS One 8:e61813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer BH, Scharf I, Foitzik S (2014) The role of per-capita productivity in the evolution of small colony sizes in ants. Behav Evol Sociobiol 68:41–53

    Article  Google Scholar 

  • Kramer BH, Schrempf A, Scheuerlein A, Heinze J (2015) Ant colonies do not trade-off reproduction against maintenance. PLoS One 10:e0137969

    Article  PubMed  PubMed Central  Google Scholar 

  • Libbrecht R, Oxley PR, Kronauer DJC, Keller L (2013) Ant genomics sheds light on the molecular regulation of social organization. Genome Biol 14:212

    Article  PubMed  PubMed Central  Google Scholar 

  • Lighton JR, Bartholomew GA, Feener DH (1987) Energetics of locomotion and load carriage and a model of the energy cost of foraging in the leaf-cutting ant Atta colombica Guer. Physiol Zool 60:524–537

    Article  Google Scholar 

  • Medawar P (1952) An unsolved problem in biology. HK Lewis and company, London

    Google Scholar 

  • Mersch DP, Crespi A, Keller L (2013) Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science 340:1090–1093

    Article  CAS  PubMed  Google Scholar 

  • Negroni M, Jongepier E, Feldmeyer B, Kramer BH, Foitzik S (2016) Life history evolution in social insects: a female perspective. Curr Opin Insect Sci 16:51–57

    Article  PubMed  Google Scholar 

  • O'Donnell S, Jeanne RL (1992) Lifelong patterns of forager behavior in a tropical swarm-founding wasp: effects of specialization and activity level on longevity. Anim Behav 44:1021–1027

    Article  Google Scholar 

  • Oettler J, Schrempf A (2016) Fitness and aging in Cardiocondyla obscurior ant queens. Curr Opin Insect Sci 16:58–63

    Article  PubMed  Google Scholar 

  • Pamminger T, Foitzik S, Kaufmann K, Menzel F (2014) Worker personality and its association with spatially structured division of labor. PLoS One 9:e79616

    Article  PubMed  PubMed Central  Google Scholar 

  • Plateaux L (1986) Comparison des cycles saisonniers, des durees des societes et des production des trois especes de fourmis Leptothorax (Myrafant) du groupe nylanderi. Actes Coll Ins Soc 3:221–234

    Google Scholar 

  • Promislow DE, Harvey PH (1990) Living fast and dying young: a comparative analysis of life-history variation among mammals. J Zool 220:417–437

    Article  Google Scholar 

  • Prothero J, Jürgens KD (1987) Scaling of maximal lifespan in mammals: a review. In: Woodhead AD, Thompson KH (eds) Evolution of longevity in animals. Plenum Press, New York, pp 49–74

    Chapter  Google Scholar 

  • Retana J, Cerdá X (1990) Social Organization of Cataglyphis cursor ant colonies (Hymenoptera, Formicidae): inter- and intraspecific comparisons. Ethology 84:105–122

    Article  Google Scholar 

  • Roff DA (1992) The evolution of life histories: theory and analysis. Chapman and Hall, London

    Google Scholar 

  • Rüppell O, Christine S, Mulcrone C, Groves L (2007) Aging without functional senescence in honey bee workers. Curr Biol 17:R274

    Article  Google Scholar 

  • Rüppell O, Königseder F, Heinze J, Schrempf A (2015) Intrinsic survival advantage of social insect queens depends on reproductive activation. J Evol Biol 28:2349–2354

    Article  Google Scholar 

  • Schmid-Hempel P, Schmid-Hempel R (1984) Life duration and turnover of foragers in the ant Cataglyphis bicolor (Hymenoptera, Formicidae). Insect Soc 31:345–360

    Article  Google Scholar 

  • Schmid-Hempel P, Wolf T (1988) Foraging effort and life span of workers in a social insect. J Anim Ecol 57:500–521

    Article  Google Scholar 

  • Schrempf A, Heinze J, Cremer S (2005) Sexual cooperation: mating increases longevity in ant queens. Curr Biol 15:267–270

    CAS  PubMed  Google Scholar 

  • Shattuck MR, Williams SA (2010) Arboreality has allowed for the evolution of increased longevity in mammals. PNAS 107:4635–4639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sohal RS (1986) The rate of living theory: a contemporary interpretation. In: Collatz KG, Sohal RS (eds) Insect aging. Springer, Berlin, pp 23–44

    Chapter  Google Scholar 

  • Solis CR, Strassmann JE (1990) Presence of brood affects caste differentiation in the social wasp, Polistes exclamans Viereck (Hymenoptera: Vespidae). Funct Ecol 4:531–541

    Article  Google Scholar 

  • Sparkman AM, Arnold SJ, Bronikowski AM (2007) An empirical test of evolutionary theories for reproductive senescence and reproductive effort in the garter snake Thamnophis elegans. Proc Roy Soc B 274:943–950

    Article  Google Scholar 

  • Stearns SC (1992) The evolution of life histories. Oxford Univ. Press, Oxford

    Google Scholar 

  • Trout WE, Kaplan WD (1970) A relation between longevity, metabolic rate, and activity in shaker mutants of Drosophila melanogaster. Exp Gerontol 5:83–92

    Article  CAS  PubMed  Google Scholar 

  • Tsuji K (1990) Reproductive division of labour related to age in the Japanese queenless ant, Pristomyrmex pungens. Anim Behav 39:843–849

    Article  Google Scholar 

  • Tsuji K, Nakata K, Heinze J (1996) Ants, age and reproduction. Naturwissenschaften 83:577–578

    Article  CAS  Google Scholar 

  • Van Doorn A, Heringa J (1986) The ontogeny of a dominance hierarchy in colonies of the bumblebee Bombus terrestris (Hymenoptera, Apidae). Insect Soc 33:3–25

    Article  Google Scholar 

  • Von Wyschetzki K, Rüppell O, Oettler J, Heinze J (2015) Transcriptomic signatures mirror the lack of the fecundity/longevity trade-off in ant queens. Mol Biol Evol 32:3173–3185

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wachter KW, Finch CE (1997) Between Zeus and the Salmon. The Biodemography of longevity. National Academy Press, Washington

    Google Scholar 

  • Wakano JY, Nakata K, Yamamura N (1998) Dynamic model of optimal age polyethism in social insects under stable and fluctuating environments. J Theor Biol 193:153–165

    Article  Google Scholar 

  • Wheeler DE (1986) Developmental and physiological determinants of caste in social Hymenoptera: evolutionary implications. Am Nat 128:13–34

    Article  Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection and the evolution of senescence. Evolution 11:398–411

    Article  Google Scholar 

  • Wilson EO (1971) The insect societies. Harvard University Press, Cambridge

    Google Scholar 

  • Wolf TJ, Schmid-Hempel P (1989) Extra loads and foraging life span in honeybee workers. J Anim Ecol 58:943–954

    Article  Google Scholar 

  • Woyciechowski M, Moroń D (2009) Life expectancy and onset of foraging in the honeybee (Apis mellifera). Insect Soc 56:193–201

    Article  Google Scholar 

  • Wurm Y, Wang J, Keller L (2010) Changes in reproductive roles are associated with changes in gene expression in fire ant queens. Mol Ecol 19:1200–1211

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the E.N Huyck preserve for research grant, accommodation, and the collection permit. The study was supported by a GeneRed grand to SF and BF as well the DFG grants (FO 298/19) and (FE 1333/6-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Kohlmeier.

Additional information

Communicated by: Alain Dejean

Philip Kohlmeier and Matteo Antoine Negroni contributed equally to the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kohlmeier, P., Negroni, M.A., Kever, M. et al. Intrinsic worker mortality depends on behavioral caste and the queens’ presence in a social insect. Sci Nat 104, 34 (2017). https://doi.org/10.1007/s00114-017-1452-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00114-017-1452-x

Keywords

Navigation