Skip to main content
Log in

Long live the queen: studying aging in social insects

  • Reciew article
  • Published:
AGE Aims and scope Submit manuscript

Abstract

Aging is a fascinating, albeit controversial, chapter in biology. Few other subjects have elicited more than a century of ever-increasing scientific interest. In this review, we discuss studies on aging in social insects, a group of species that includes ants and termites, as well as certain bee and wasp species. One striking feature of social insects is the lifespan of queens (reproductive females), which can reach nearly 30 years in some ant species. This is over 100 times the average lifespan of solitary insects. Moreover, there is a tremendous variation in lifespan among castes, with queens living up to 500 times longer than males and 10 times longer than workers (non-reproductive individuals). This lifespan polymorphism has allowed researchers to test the evolutionary theory of aging and – more recently – to investigate the proximate causes of aging. The originality of these studies lies in their use of naturally evolved systems to address questions related to aging and lifespan determination that cannot be answered using the conventional model organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams PA (1993) Does increased mortality favor the evolution of more rapid senescence? Evolution 47: 877–887

    Article  Google Scholar 

  • Aigaki T, Seong KH and Matsuo T (2002) Longevity determination genes in Drosophila melanogaster. Mech Ageing Dev 123: 1531–1541

    Article  CAS  PubMed  Google Scholar 

  • Amdam GV, Simoes ZLP, Hagen A, Norberg K, Schroder K et al. (2004) Hormonal control of the yolk precursor vitellogenin regulates immune function and longevity in honeybees. Exp Gerontol 39: 767–773

    Article  CAS  PubMed  Google Scholar 

  • Arking R, Buck S, Novoseltev VN, Hwangbo D and Lane M (2002) Genomic pasticity, energy allocations, and the extended longevity phenotypes of Drosophila. Ageing Res Rev 1: 209–228

    Article  CAS  PubMed  Google Scholar 

  • Austad SN and Fischer KE (1991) Mammalian aging, metabolism, and ecology – Evidence from the bats and marsupials. J Gerontol 46: B47–B53

    CAS  PubMed  Google Scholar 

  • Chapuisat M and Keller L (2002) Division of labour influences the rate of ageing in weaver ant workers. Proc R Soc Lond Ser B Biol Sci 269: 909–913

    Article  Google Scholar 

  • Charlesworth B (1980) Evolution in Age-Structured Populations. Cambridge University Press, Cambridge

    Google Scholar 

  • Dudas SP and Arking R (1995) A coordinate upregulation of antioxidant gene activities is associated with the delayed onset of senescence in a long-lived strain of Drosophila. J Gerontol Ser A–Biol Sci Med Sci B1117–B1127

  • Dudycha JL (2001) The senescence of Daphnia from risky and safe habitats. Ecol Lett 4: 102–105

    Article  Google Scholar 

  • Finkel T and Holbrook NJ (2000) Oxidants, oxidative stress and the biology of ageing. Nature 408: 239–247

    Article  CAS  PubMed  Google Scholar 

  • Fluri P, Lüscher H, Wille H and Gerig L (1982) Changes in weight of the pharyngeal gland and haemolymph titres of juvenile hormone, protein and vitellogenin in worker honey bees. J Insect Physiol 28: 61–68

    Article  CAS  Google Scholar 

  • Guarente L and Kenyon C (2000) Genetic pathways that regulate ageing in model organisms. Nature 408: 255–262

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WD (1966) The moulding of senescence by natural selection. J Theor Biol 12: 12–45

    Article  CAS  PubMed  Google Scholar 

  • Harman D (1956) Aging – A theory based on free-radical and radiation chemistry. J Gerontol 11: 298–300

    CAS  PubMed  Google Scholar 

  • Hartmann A and Heinze J (2003) Lay eggs, live longer: division of labor and life span in a clonal ant species. Evolution 57: 2424–2429

    PubMed  Google Scholar 

  • Hekimi S and Guarente L (2003) Genetics and the specificity of the aging process. Science 299: 1351–1354

    Article  CAS  PubMed  Google Scholar 

  • Hillesheim E and Stearns SC (1992) Correlated responses in life-history traits to artificial selection for body-weight in Drosophila melanogaster. Evolution 46: 745–752

    Article  Google Scholar 

  • Hölldobler B and Wilson EO (1977) The number of queens: An important trait in ant evolution. Naturwissenschaften 64: 8–15

    Article  Google Scholar 

  • Hölldobler B and Wilson EO (1990) The Ants. Springer-Verlag, Berlin

    Google Scholar 

  • Jenkins NL, McColl G and Lithgow GJ (2004) Fitness cost of extended lifespan in Caenorhabditis elegans. Proc R Soc Lond Ser B Biol Sci 271: 2523–2526

    Article  Google Scholar 

  • Keller L (1998) Queen lifespan and colony characteristics in ants and termites. Insect Soc 45: 235–246

    Article  Google Scholar 

  • Keller L and Genoud M (1997) Extraordinary lifespans in ants: a test of evolutionary theories of ageing. Nature 389: 958–960

    Article  CAS  Google Scholar 

  • Kirkwood TBL (1977) Evolution of aging. Nature 270: 301–304

    Article  CAS  PubMed  Google Scholar 

  • Kirkwood TBL (1981) Repair and its evolution: survival versus reproduction. In: Townsend CR and Calow P (eds) Physiological Ecology: An Evolutionary Approach to Resource Use, pp 165–189. Blackwell Scientific Publications, Oxford

    Google Scholar 

  • Kirkwood TBL and Rose MR (1991) Evolution of senescence – late survival sacrificed for reproduction. Philos Trans R Soc Lond Ser B Biol Sci 332: 15–24

    CAS  Google Scholar 

  • Ku HH, Brunk UT and Sohal RS (1993) Relationship between mitochondrial superoxide and hydrogen-peroxide production and longevity of mammalian species. Free Radic Biol Med 15: 621–627

    Article  CAS  PubMed  Google Scholar 

  • Luckinbill LS, Arking R, Clare MJ, Cirocco WC and Buck SA (1984) Selection for delayed senescence in Drosophila melanogaster. Evolution 38: 996–1003

    Article  Google Scholar 

  • Marden JH, Rogina B, Montooth KL and Helfand SL (2003) Conditional tradeoffs between aging and organismal performance of Indy long-lived mutant flies. Proc Natl Acad Sci USA 100: 3369–3373

    Article  CAS  PubMed  Google Scholar 

  • Medawar PB (1952) An Unsolved Problem of Biology. Lewis, London

    Google Scholar 

  • Medvedev ZA (1990) An attempt at a rational classification of theories of aging. Biol Rev 65: 375–398

    CAS  PubMed  Google Scholar 

  • Neukirch A (1982) Dependence of the life span of the honeybee (Apis mellifica) upon flight performance and energy consumption. J Comp Physiol B 146: 35–40

    Article  CAS  Google Scholar 

  • Nonacs P (1988) Queen number in colonies of social Hymenoptera as a kin-selected adaptation. Evolution 42: 566–580

    Article  Google Scholar 

  • Orr WC and Sohal RS (1994) Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science 263: 1128–1130

    CAS  PubMed  Google Scholar 

  • Oster GF and Wilson EO (1978) Caste and Ecology in the Social Insects. Princeton University Press, Princeton

    Google Scholar 

  • Parker JD, Parker KM, Sohal BH, Sohal RS and Keller L (2004a) Decreased expression of Cu–Zn superoxide dismutase 1 in ants with extreme lifespan. Proc Natl Acad Sci USA 101: 3486–3489

    Article  CAS  PubMed  Google Scholar 

  • Parker JD, Parker KM and Keller L (2004b) Molecular phylogenetic evidence for an extracellular Cu Zn superoxide dismutase gene in insects. Insect Mol Biol 13: 587–594

    Article  CAS  PubMed  Google Scholar 

  • Partridge L and Fowler K (1992) Direct and correlated responses to selection on age at reproduction in Drosophila melanogaster. Evolution 46: 76–91

    Article  Google Scholar 

  • Partridge L, Prowse N and Pignatelli P (1999) Another set of responses and correlated responses to selection on age at reproduction in Drosophila melanogaster. Proc R Soc Lond Ser B Biol Sci 266: 255–261

    Article  CAS  Google Scholar 

  • Perez-Campo R, López-Torres M, Cadenas E, Rojas C and Barja G (1998) The rate of free radical production as a determinant of the rate of aging: evidence from the comparative approach. J Comp Physiol B 168: 149–158

    Article  CAS  PubMed  Google Scholar 

  • Pinto LZ, Bitondi MMG and Simoes ZLP (2000) Inhibition of vitellogenin synthesis in Apis mellifera workers by a juvenile hormone analogue, pyriproxyfen. J Insect Physiol 46: 153–160

    Article  CAS  PubMed  Google Scholar 

  • Promislow DEL (1991) Senescence in natural populations of mammals: A comparative study. Evolution 45: 1869–1887

    Article  Google Scholar 

  • Reeve HK and Nonacs P (1997) Within-group aggression and the value of group members – Theory and a field test with social wasps. Behav Ecol 8: 75–82

    Google Scholar 

  • Reznick DN, Bryant MJ, Roff D, Ghalambor CK and Ghalambor DE (2004) Effect of extrinsic mortality on the evolution of senescence in guppies. Nature 431: 1095–1099

    Article  CAS  PubMed  Google Scholar 

  • Ricklefs RE (1998) Evolutionary theories of aging: confirmation of a fundamental prediction, with implications for the genetic basis and evolution of life span. Am Nat 152: 24–44

    Article  Google Scholar 

  • Rose MR (1984) Laboratory evolution of postponed senescence in Drosophila melanogaster. Evolution 38: 1004–1010

    Article  Google Scholar 

  • Rose MR (1991) Evolutionary Biology of Aging. Oxford University Press, New York

    Google Scholar 

  • Rueppell O, Amdam GV, Page RE and Carey JR (2004) From genes to societies. Sci Aging Knowl Environ, pe5

  • Sohal RS, Agarwal A, Agarwal S and Orr WC (1995) Simultaneous overexpression of copper- and zinc-containing superoxide dismutase and catalase retards age related oxidative damage and increases metabolic potential in Drosophila melanogaster. J Biol Chem 270: 15671–15674

    Article  CAS  PubMed  Google Scholar 

  • Sohal RS, Mockett RJ and Orr WC (2002) Mechanisms of aging: An appraisal of the oxidative stress hypothesis. Free Radic Biol Med 33: 575–586

    Article  CAS  PubMed  Google Scholar 

  • Spencer CC, Howell CE, Wright AR and Promislow DEL (2003) Testing an ‘aging gene’ in long-lived Drosophila strains: increased longevity depends on sex and genetic background. Aging Cell 2: 123–130

    Article  CAS  PubMed  Google Scholar 

  • Stearns SC (1992) The Evolution of Life Histories. Oxford University Press, Oxford

    Google Scholar 

  • Stearns SC, Ackermann M, Doebeli M and Kaiser M (2000) Experimental evolution of aging, growth, and reproduction in fruitflies. Proc Natl Acad Sci USA 97: 3309–3313

    Article  CAS  PubMed  Google Scholar 

  • Sun J and Tower J (1999) FLP recombinase-mediated induction of Cu/Zn-superoxide dismutase transgene expression can extend the life span of adult Drosophila melanogaster flies. Mol Cell Biol 19: 216–228

    CAS  PubMed  Google Scholar 

  • Tatar M, Gray DW and Carey JR (1997) Altitudinal variation for senescence in Melanoplus grasshoppers. Oecologia 111: 357–364

    Article  Google Scholar 

  • Tatar M, Bartke A and Antebi A (2003) The endocrine regulation of aging by insulin-like signals. Science 299: 1346–1351

    Article  CAS  PubMed  Google Scholar 

  • Tower J (2000) Transgenic methods for increasing Drosophila life span. Mech Ageing Dev 118: 1–14

    Article  CAS  PubMed  Google Scholar 

  • Tsuji K, Nakata K and Heinze J (1996) Lifespan and reproduction in a queenless ant. Naturwissenschaften 83: 577–578

    CAS  Google Scholar 

  • Walker DW, McColl G, Jenkins NL, Harris J and Lithgow GJ (2000) Evolution of lifespan in C. elegans. Nature 405: 296–297

    Article  CAS  PubMed  Google Scholar 

  • Wheeler DE (1986) Developmental and physiological determinants of caste in social Hymenoptera–Evolutionary implications. Am Nat 128: 13–34

    Article  Google Scholar 

  • Williams GC (1957) Pleiotropy, natural selection, and the evolution of senescence. Evolution 11: 398–411

    Article  Google Scholar 

  • Zwaan B, Bijlsma R and Hoekstra RE (1995a) Direct selection on life-span in Drosophila melanogaster. Evolution 49: 649–659

    Article  Google Scholar 

  • Zwaan B, Bijlsma R and Hoekstra RF (1995b) Artificial selection for developmental time in Drosophila melanogaster in relation to the evolution of aging-direct and correlated responses. Evolution 49: 635–648

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Jemielity.

About this article

Cite this article

Jemielity, S., Chapuisat, M., Parker, J.D. et al. Long live the queen: studying aging in social insects. AGE 27, 241–248 (2005). https://doi.org/10.1007/s11357-005-2916-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11357-005-2916-z

Key words

Navigation