Skip to main content

Advertisement

Log in

Development of a generalist predator, Podisus maculiventris, on glucosinolate sequestering and nonsequestering prey

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

Insect herbivores exhibit various strategies to counter the toxic effects of plant chemical defenses. These strategies include the detoxification, excretion, and sequestration of plant secondary metabolites. The latter strategy is often considered to provide an additional benefit in that it provides herbivores with protection against natural enemies such as predators. Profiles of sequestered chemicals are influenced by the food plants from which these chemicals are derived. We compared the effects of sequestration and nonsequestration of plant secondary metabolites in two specialist herbivores on the development of a generalist predator, Podisus maculiventris. Profiles of glucosinolates, secondary metabolites characteristic for the Brassicaceae, are known to differ considerably both inter- and intraspecifically. Throughout their immature (=nymphal) development, the predator was fed on larval stages of either sequestering (turnip sawfly, Athalia rosae) or nonsequestering (small cabbage white butterfly, Pieris rapae) prey that in turn had been feeding on plants originating from three wild cabbage (Brassica oleracea) populations that have previously been shown to differ in their glucosinolate profiles. We compared survival, development time, and adult body mass as parameters for bug performance. Our results show that sequestration of glucosinolates by A. rosae only marginally affected the development of P. maculiventris. The effects of plant population on predator performance were variable. We suggest that sequestration of glucosinolates by A. rosae functions not only as a defensive mechanism against some predators, but may also be an alternative way of harmlessly dealing with plant allelochemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdalsamee MK, Müller C (2012) Effects of indole glucosinolates on performance and sequestration by the sawfly Athalia rosae and consequences of feeding on the plant defence system. J Chem Ecol 38:1366–1375

    Article  CAS  PubMed  Google Scholar 

  • Agrawal AA, Petschenka G, Bingham RA, Weber MG, Rasmann S (2012) Toxic cardenolides: chemical ecology and coevolution of specialized plant-herbivore interactions. New Phytol 194:28–45

    Article  CAS  PubMed  Google Scholar 

  • Biere A, Marak HB, van Damme JMM (2004) Plant chemical defence against herbivores and pathogens: generalized defence or trade-offs? Oecologia 140:430–441

    Article  PubMed  Google Scholar 

  • Boevé J-L, Müller C (2005) Defence effectiveness of easy bleeding sawfly larvae towards invertebrate and avian predators. Chemoecology 15:51–58

    Article  Google Scholar 

  • Boevé J-L, Schaffner U (2003) Why does the larval integument of some sawfly species disrupt so easily? The harmful hemolymph hypothesis. Oecologia 134:104–111

    Article  PubMed  Google Scholar 

  • Coley PD, Bateman ML, Kursar TA (2006) The effect of plant quality on caterpillar growth and defense against natural enemies. Oikos 115:219–228

    Article  Google Scholar 

  • De Clercq P, Degheele D (1994) Laboratory measurement of predation by Podisus maculiventris and P. sagittal (Hemiptera: Pentatomidae) on beet armyworm (Lepidoptera: Noctuidae). J Econ Entomol 87:76–87

    Google Scholar 

  • De Clercq P, Merlevede F, Metsdagh I, Vandendurpel K, Mohaghegh J, Degheele D (1998) Predation on the tomato looper Chrysodeixis chalcites (Esper) (Lep., Noctuidae) by Podisus maculiventris (Say) and Podisus nigrispinus (Dallas) (Het., Pentatomidae). J Appl Entomol 122:92–98

    Google Scholar 

  • Ehrlich PR, Raven PH (1964) Butterflies and plants—a study in coevolution. Evolution 18:586–608

    Article  Google Scholar 

  • Fordyce JA (2001) The lethal plant defence paradox remains: inducible host-plant aristolochic acids and the growth and defence of the pipevine swallowtail. Entomol Exp Appl 100:339–346

    Article  CAS  Google Scholar 

  • Giamoustaris A, Mithen R (1995) The effect of modifying the glucosinolates content of leaves of oilseed rape (Brassica napus spp. oleifera) on its interaction with specialist and generalist pests. Ann Appl Biol 126:347–363

    Article  CAS  Google Scholar 

  • Gols R, Harvey JA (2009) Plant-mediated effects in the Brassicaceae on the performance and behaviour of parasitoids. Phytochem Rev 8:187–206

    Article  CAS  Google Scholar 

  • Gols R, Bukovinszky T, van Dam NM, Dicke M, Bullock JM, Harvey JA (2008a) Performance of generalist and specialist herbivores and their endoparasitoids differs on cultivated and wild Brassica populations. J Chem Ecol 34:132–143

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gols R, Wagenaar R, Bukovinszky T, van Dam NM, Dicke M, Bullock JM, Harvey JA (2008b) Genetic variation in defense chemistry in wild cabbage affect herbivores and their endoparasitoids. Ecology 89:1616–1626

    Article  PubMed  Google Scholar 

  • Hartmann T, Theuring C, Beuerle T, Ernst L, Singer MS, Bernays EA (2004) Acquired and partially de novo synthesized pyrrolizidine alkaloids in two polyphagous arctiids and the alkaloid profiles of their larval food-plants. J Chem Ecol 30:229–254

    Article  CAS  PubMed  Google Scholar 

  • Harvey JA, Gols R (2011) Population-related variation in plant defense more strongly affects survival of an herbivore than its solitary wasp. J Chem Ecol 37:1081–1090

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Harvey JA, van Dam NM, Gols R (2003) Interactions over four trophic levels: food plant quality affects development of a hyperparasitoid as mediated through a herbivore and its primary parasitoid. J Chem Ecol 72:520–531

    Google Scholar 

  • Harvey JA, van Nouhuys S, Biere A (2005) Effects of qualitative variation in allelochemicals in Plantago lanceolata on development of a generalist and a specialist herbivore and their endoparasitoids. J Chem Ecol 31:287–302

    Article  CAS  PubMed  Google Scholar 

  • Harvey JA, Gols R, Wagenaar R, Bezemer TM (2007) Development of an insect herbivore and its pupal parasitoid reflect differences in direct plant defense. J Chem Ecol 33:1556–1569

    Article  CAS  PubMed  Google Scholar 

  • Harvey JA, van Dam NM, Raaijmakers CE, Bullock JM, Gols R (2011) Tri-trophic effects of inter- and intra-population variation in defence chemistry of wild cabbage (Brassica oleracea). Oecologia 166:421–431

    Article  PubMed  Google Scholar 

  • Holzinger F, Frick C, Wink M (1992) Molecular basis of the insensitivity of the Monarch (Danaus plexippus) to cardiac glycosides. FEBS Lett 314:477–480

    Article  CAS  PubMed  Google Scholar 

  • Hopkins RJ, van Dam NM, van Loon JA (2009) Role of glucosinolates in plant-insect relationships and multitrophic interactions. Annu Rev Entomol 54:57–83

    Article  CAS  PubMed  Google Scholar 

  • Jaenike J (1990) Host specialization in phytophagous insects. Annu Rev Ecol Syst 21:243–273

    Article  Google Scholar 

  • Jones AME, Bridges M, Bones AM, Cole R, Rossiter JT (2001) Purification and characterization of a non-plant myrosinase from the cabbage aphid Brevicoryne brassicae (L.). Insect Biochem Mol 31:1–5

    Article  CAS  Google Scholar 

  • Lampert EC, Dyer LA, Bowers MD (2011) Chemical defence across three trophic levels: Catalpa bignonioides, the caterpillar Ceratomia catalpae, and its endoparasitoid Cotesia congregata. J Chem Ecol 37:1063–1070

    Article  CAS  PubMed  Google Scholar 

  • Loxdale HD, Lushai G, Harvey JA (2011) The evolutionary improbability of ‘generalism’ in nature, with special reference to insects. Biol J Linn Soc 103:1–18

    Article  Google Scholar 

  • Macel M, Bruinsma M, Dijkstra SM, Ooijendijk T, Niemeyer HM, Klinkhamer PGL (2005) Differences in effects of pyrrolizidine alkaloids on five different generalist insect herbivore species. J Chem Ecol 31:1493–1508

    Article  CAS  PubMed  Google Scholar 

  • Malcolm SB, Brower LP (1989) Evolutionary and ecological implications of cardenolide sequestration in the monarch butterfly. Experientia 45:284–295

    Article  CAS  Google Scholar 

  • Merritt SZ (1996) Within-plant variation in concentrations of amino acids, sugar, and sinigrin in phloem sap of black mustard, Brassica nigra (L.) Koch (Cruciferae). J Chem Ecol 22:1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Mitter C, Farrell B, Futuyma DJ (1991) Phylogenetic studies of insect plant interactions—insights into the genesis of diversity. TREE 6:290–293

    CAS  PubMed  Google Scholar 

  • Moyes CL, Collin HA, Britton G, Raybould AF (2000) Glucosinolates and differential herbivory in wild populations of Brassica oleracea. J Chem Ecol 26:2625–2641

    Article  CAS  Google Scholar 

  • Müller C (2009) Interactions between glucosinolate- and myrosinase-containing plants and the sawfly Athalia rosae. Phytochem Rev 8:121–134

    Article  Google Scholar 

  • Müller C, Arand K (2007) Trade-offs in oviposition choice? Food dependent performance and defence against predators of a herbivorous sawfly. Entomol Exp Appl 124:153–159

    Article  Google Scholar 

  • Müller C, Brakefield PM (2003) Analysis of a chemical defense in sawfly larvae: easy bleeding targets predatory wasps in late summer. J Chem Ecol 29:2683–2694

    Article  PubMed  Google Scholar 

  • Müller C, Wittstock U (2005) Uptake and turn-over of glucosinolates sequestered in the sawfly Athalia rosae. Insect Biochem Mol 35:1189–1198

    Article  Google Scholar 

  • Müller C, Agerbrink N, Olsen CE, Boevé J-L, Schaffner U, Brakefield PM (2001) Sequestration of host plant glucosinolates in the defensive hemolymph of the sawfly Athalia rosae. J Chem Ecol 27:2505–2516

    Article  PubMed  Google Scholar 

  • Müller C, Boeve J-L, Brakefield PM (2002) Host plant derived feeding deterrence towards ants in the turnip sawfly Athalia rosae. Entomol Exp Appl 104:153–157

    Article  Google Scholar 

  • Müller C, Agerbrink N, Olsen CE (2003) Lack of sequestration of host plant glucosinolates in Pieris rapae and P. brassicae. Chemoecology 13:47–54

    Article  Google Scholar 

  • Nishida R (2002) Sequestration of defensive substances from plants by Lepidoptera. Annu Rev Entomol 47:57–92

    Article  CAS  PubMed  Google Scholar 

  • O’Neil RJ (1988) Predation by Podisus maculiventris (Say) on Mexican bean beetle, Epilachna varivestis Mulsant, in Indians soybeans. Can Entomol 120:161–166

    Article  Google Scholar 

  • Ode PJ (2006) Plant chemistry and natural enemy fitness: effects on herbivore and natural enemy interactions. Annu Rev Entomol 51:163–185

    Article  CAS  PubMed  Google Scholar 

  • Opitz SEW, Müller C (2009) Plant chemistry and insect sequestration. Chemoecology 19:117–154

    Article  CAS  Google Scholar 

  • Opitz SEW, Jensen SR, Müller C (2010) Sequestration of glucosinolates and iridoid glucosides in sawfly species of the genus Athalia and their role in defence against ants. J Chem Ecol 36:148–157

    Article  CAS  PubMed  Google Scholar 

  • Price PW (1972) Parasitoids utilizing the same host: adaptive nature of differences in size and form. Ecology 53:190–195

    Article  Google Scholar 

  • Renwick JAA (2002) The chemical world of crucivores: lures, treats and traps. Entomol Exp Appl 104:35–42

    Article  CAS  Google Scholar 

  • Reudler JH, Biere A, Harvey JA, van Nouhuys S (2011) Differential performance of a specialist and two generalist herbivores and their endoparasitoids on Plantago lanceolata. J Chem Ecol 37:765–778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Shorey HH, Hale RL (1965) Mass-rearing of larvae of 9 noctuid species on a simple artificial medium. J Econ Entomol 58:522–524

    Google Scholar 

  • Singer MS, Bernays EA (2009) Specialized generalists: Evolutionary ecology of polyphagous woolly bear caterpillars. In: Conner WE (ed) Tiger moths and woolly bears: behavior, ecology, and evolution of the Arctiidae. Oxford University Press, Oxford, pp 103–114

    Google Scholar 

  • Soler R, van der Putten WH, Harvey JA, Vet LEM, Dicke M, Bezemer TM (2012) Root herbivore effects on aboveground multitrophic interactions: patterns, processes and mechanisms. J Chem Ecol 38:755–767

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Starý P (1970) Biology of aphid parasites (Hymenoptera: Aphindiidae) with respect to biological control. Series Entomologica 6. Dr. W. Junk, The Hague

  • Trigo JR (2000) The chemistry of antipredator defense by secondary compounds in neotropical Lepidoptera: facts, perspectives and caveats. J Brazil Chem Soc 11:551–561

    Article  CAS  Google Scholar 

  • van Dam NM, Hadwich K, Baldwin IT (2005) Induced responses in Nicotiana attenuata affect behavior and growth of the specialist herbivore Manduca sexta. Oecologia 122:371–379

    Google Scholar 

  • van Geem M, Gols R, van Dam NM, van der Putten WH, Fortuna T, Harvey JA (2013) The importance of aboveground-belowground interactions on the evolution and maintenance of variation in plant defense traits. Front Plant Sci 4:431

    Article  PubMed Central  PubMed  Google Scholar 

  • Vlieger L, Brakefield PM, Müller C (2004) Effectiveness of the defence mechanism of the turnip sawfly, Athalia rosae (Hymenoptera: Tenthredinidae), against predation by lizards. Bull Entomol Res 94:283–289

    Article  CAS  PubMed  Google Scholar 

  • Vrieling K, Soldaat LL, Smit W (1991) The influence of pyrrolizidine alkaloids of Senecio jacobea on Tyria jacobaeae, Brachycaudus cardii and Haplothrips senecionis. Neth J Zool 41:228–239

    Article  Google Scholar 

  • Weiser LA, Stamp NE (1998) Combined effects of allelochemicals, prey availability, and supplemental plant material on growth of a generalist insect predator. Entomol Exp Appl 87:181–189

    Article  CAS  Google Scholar 

  • Winde I, Wittstock U (2011) Insect herbivore counteradaptations to the plant glucosinolate-myrosinase system. Phytochemistry 72:1566–1575

    Article  CAS  PubMed  Google Scholar 

  • Wittstock U, Agerbirk N, Stauber EJ, Olsen CE, Hippler M, Mitchell-Olds T, Gershenson J, Vogel H (2004) Successful herbivore attack due to metabolic diversion of a plant chemical defense. Proc Natl Acad Sci 101:4859–4864

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zangerl AR, Berenbaum MR (2003) Phenotype matching in wild parsnip and parsnip webworms: causes and consequences. Evolution 57:806–815

    Article  CAS  PubMed  Google Scholar 

  • Zangerl AR, Berenbaum MR (2005) Increase in toxicity of an invasive weed after reassociation with its coevolved herbivore. Proc Natl Acad Sci U S A 102:15529–15532

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Caroline Müller for providing them with A. rosae pupae. Jeffrey A. Harvey and Moniek van Geem were financially supported by a grant (No. 821006) from the Earth and Life Sciences Foundation (ALW), which is subsidized by the Netherlands Organization for Scientific Research (NWO). This is publication number 5633 of the Netherlands Institute of Ecology (NIOO-KNAW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moniek van Geem.

Additional information

Communicated by: Sven Thatje

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Geem, M., Harvey, J.A. & Gols, R. Development of a generalist predator, Podisus maculiventris, on glucosinolate sequestering and nonsequestering prey. Naturwissenschaften 101, 707–714 (2014). https://doi.org/10.1007/s00114-014-1207-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-014-1207-x

Keywords

Navigation